Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51637
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳示國(Shih-Kuo Chen)
dc.contributor.authorShih-Feng Youen
dc.contributor.author游士鋒zh_TW
dc.date.accessioned2021-06-15T13:42:17Z-
dc.date.available2019-02-19
dc.date.copyright2016-02-19
dc.date.issued2015
dc.date.submitted2015-12-29
dc.identifier.citationAgarwala, K.L., Ganesh, S., Amano, K., Suzuki, T., and Yamakawa, K. (2001). DSCAM, a Highly Conserved Gene in Mammals, Expressed in Differentiating Mouse Brain. Biochemical and Biophysical Research Communications 281, 697-705.
Agarwala, K.L., Nakamura, S., Tsutsumi, Y., and Yamakawa, K. (2000). Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion. Molecular Brain Research 79, 118-126.
Ahnelt, P.K., and Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research 19, 711-777.
Ammermuller, J., Mockel, W., and Rujan, P. (1993). A geometrical description of horizontal cell networks in the turtle retina. Brain research 616, 351-356.
Anishchenko, A., Greschner, M., Elstrott, J., Sher, A., Litke, A.M., Feller, M.B., and Chichilnisky, E.J. (2010). Receptive Field Mosaics of Retinal Ganglion Cells Are Established Without Visual Experience. Journal of Neurophysiology 103, 1856-1864.
Baden, T.B., Philipp Bethge, Matthias Euler, Thomas (2013). Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina. Current Biology 23, 48-52.
Baker, N.E., Mlodzik, M., and Rubin, G.M. (1990). Spacing differentiation in the developing Drosophila eye: A fibrinogen-Related lateral inhibitor encoded by scabrous. Science 250, 1370-1377.
Blackshaw, S., Harpavat, S., Trimarchi, J., Cai, L., Huang, H., Kuo, W.P., Weber, G., Lee, K., Fraioli, R.E., Cho, S.-H., et al. (2004). Genomic Analysis of Mouse Retinal Development. PLoS Biology 2, e247.
Boycott, B., and Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience 3, 1069-1088.
Brandon, C. (1987). Cholinergic neurons in the rabbit retina: immunocytochemical localization, and relationship to GABAergic and cholinesterase-containing neurons. Brain research 401, 385-391.
Chen, S.-K., Chew, K.S., McNeill, D.S., Keeley, P.W., Ecker, J.L., Mao, B.Q., Pahlberg, J., Kim, B., Lee, S.C.S., Fox, M., et al. (2013). Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment. Neuron 77, 503-515.
Chen, S.K., Badea, T.C., and Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92-95.
Chun, M.H., and Wassle, H. (1989a). GABA-like immunoreactivity in the cat retina: electron microscopy. J Comp Neurol 279, 55-67.
Chun, M.H., and Wassle, H. (1989b). GABA-like immunoreactivity in the cat retina: light microscopy. J Comp Neurol 279, 43-54.
Cook, J.E. (1996). Spatial properties of retinal mosaics: an empirical evaluation of some existing measures. Visual neuroscience 13, 15-30.
Cook, J.E. (1998). Getting to Grips with Neuronal Diversity. In Development and Organization of the Retina, L. Chalupa, and B. Finlay, eds. (Springer US), pp. 91-120.
Cook, J.E. (2003). Spatial regularity among retinal neurons. In The Visual Neurosciences, L.M. Chalupa, and J.S. Werner, eds. (Cambridge, MA: MIT Press), pp. 463-477.
Cook, J.E., and Chalupa, L.M. (2000). Retinal mosaics: new insights into an old concept. Trends in neurosciences 23, 26-34.
Cook, J.E.P., T. A. (2001). Evidence for spatial regularity among retinal ganglion cells that project to the accessory optic system in a frog, a reptile, a bird, and a mammal. Visual neuroscience 18, 289-297.
Curcio, C.A.S., Kenneth R. (1992). Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy. Visual neuroscience 9, 169-180.
Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 13, 5334-5355.
Devries, S.H., and Baylor, D.A. (1997). Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol 78, 2048-2060.
Dowling, J.E. (1987). The retina: an approachable part of the brain (Harvard University Press).
Eglen, S. (2012). Cellular Spacing: Analysis and Modelling of Retinal Mosaics. In Computational Systems Neurobiology, N. Le Novère, ed. (Springer Netherlands), pp. 365-385.
Eglen, S.J., and Willshaw, D.J. (2002). Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study. Development (Cambridge, England) 129, 5399-5408.
Euler, T., Haverkamp, S., Schubert, T., and Baden, T. (2014). Retinal bipolar cells: elementary building blocks of vision. Nature reviews Neuroscience 15, 507-519.
Famiglietti, E.V. (1991). Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J Comp Neurol 309, 40-70.
Field, G.D., Sher, A., Gauthier, J.L., Greschner, M., Shlens, J., Litke, A.M., and Chichilnisky, E.J. (2007). Spatial properties and functional organization of small bistratified ganglion cells in primate retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 13261-13272.
Finlay, B.L., and Pallas, S.L. (1989). Control of cell number in the developing mammalian visual system. Progress in neurobiology 32, 207-234.
Fuerst, P.G., Koizumi, A., Masland, R.H., and Burgess, R.W. (2008). Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451, 470-474.
Galli-Resta, L.N., Elena Volpini, Maila Strettoi, Enrica (2000). The spatial organization of cholinergic mosaics in the adult mouse retina. European Journal of Neuroscience 12, 3819-3822.
Ghosh, K.K.B., S. Haverkamp, S. Feigenspan, A. Wassle, H. (2004). Types of bipolar cells in the mouse retina. J Comp Neurol 469, 70-82.
Greferath, U.G., U.; Wassle, H. (1990). Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301, 433-442.
Grunert, U.W., H. (1990). GABA-like immunoreactivity in the macaque monkey retina: a light and electron microscopic study. J Comp Neurol 297, 509-524.
Gustincich, S., Feigenspan, A., Wu, D.K., Koopman, L.J., and Raviola, E. (1997). Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron 18, 723-736.
Hattori, D., Millard, S.S., Wojtowicz, W.M., and Zipursky, S.L. (2008). Dscam-mediated cell recognition regulates neural circuit formation. Annual review of cell and developmental biology 24, 597-620.
Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., and Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168-174.
Jeyarasasingam, G., Snider, C.J., Ratto, G.M., and Chalupa, L.M. (1998). Activity-regulated cell death contributes to the formation of ON and OFF alpha ganglion cell mosaics. J Comp Neurol 394, 335-343.
Kay, J.N., Chu, M.W., and Sanes, J.R. (2012). MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483, 465-469.
Keeley, P.W., and Reese, B.E. (2014a). Genomic Control of Horizontal Cell Regularity. Investigative ophthalmology & visual science 55, 718-718.
Keeley, P.W., and Reese, B.E. (2014b). The patterning of retinal horizontal cells: normalizing the regularity index enhances the detection of genomic linkage. Frontiers in Neuroanatomy 8, 113.
Kolb, H.L., Kenneth A.; Fisher, Steven K. (1992). Neurons of the human retina: A Golgi study. The Journal of Comparative Neurology 318, 147-187.
Kostadinov, D., and Sanes, J.R. (2015). Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife.
Lefebvre, J.L., Kostadinov, D., Chen, W.V., Maniatis, T., and Sanes, J.R. (2012). Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488, 517-521.
Lefebvre, J.L., Zhang, Y., Meister, M., Wang, X., and Sanes, J.R. (2008). γ-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina. Development (Cambridge, England) 135, 4141-4151.
Levine, M.W.S., J. M. (1977). Variability in ganglion cell firing patterns; implications for separate 'on' and 'off' processes. Vision research 17, 765-776.
MacNeil, M.A., and Masland, R.H. (1998). Extreme Diversity among Amacrine Cells: Implications for Function. Neuron 20, 971-982.
Mariani, A.P. (1983). Giant bistratified bipolar cells in monkey retina. The Anatomical Record 206, 215-220.
Mariani, A.P. (1985). Multiaxonal horizontal cells in the retina of the tree shrew, Tupaia glis. The Journal of Comparative Neurology 233, 553-563.
Masland, R.H. (2001). Neuronal diversity in the retina. Current opinion in neurobiology 11, 431-436.
Masland, R.H. (2012). The tasks of amacrine cells. Visual neuroscience 29, 3-9.
Massey, S.C., and Mills, S.L. (1996). A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. The Journal of Comparative Neurology 366, 15-33.
Matthews, B.J., Kim, M.E., Flanagan, J.J., Hattori, D., Clemens, J.C., Zipursky, S.L., and Grueber, W.B. (2007). Dendrite self-avoidance is controlled by Dscam. Cell 129, 593-604.
McGuire, B.A.S., J.K. Sterling, P. (1984). Microcircuitry of bipolar cells in cat retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 4, 2920-2938.
McGuire, B.A.S., J.K. Sterling, P. (1986). Microcircuitry of beta ganglion cells in cat retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 6, 907-918.
Millard, S.S., Flanagan, J.J., Pappu, K.S., Wu, W., and Zipursky, S.L. (2007). Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 447, 720-724.
Muller, B.P., L. De Grip, W. J. Gery, I. Korf, H. W. (1989). Opsin- and S-antigen-like immunoreactions in photoreceptors of the tree shrew retina. Investigative ophthalmology & visual science 30, 530-535.
Negishi, K.K., S.; Teranishi, T. (1988). Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neuroscience letters 94, 247-252.
Neves, G., Zucker, J., Daly, M., and Chess, A. (2004). Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nature genetics 36, 240-246.
Nguyen-Ba-Charvet, K.T., and Chedotal, A. (2014). Development of retinal layers. Comptes rendus biologies 337, 153-159.
O'Leary, D.D., Fawcett, J.W., and Cowan, W.M. (1986). Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. The Journal of neuroscience : the official journal of the Society for Neuroscience 6, 3692-3705.
Paik, S.-B., and Ringach, D.L. (2011). Retinal origin of orientation maps in visual cortex. Nat Neurosci 14, 919-925.
Peichl, L., and Wässle, H. (1979). Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. The Journal of physiology 291, 117-141.
Poche, R.A. (2008). Somal positioning and dendritic growth of horizontal cells are regulated by interactions with homotypic neighbors. Eur J Neurosci 27, 1607-1614.
Ramon y Cajal, S. (1892). The structure of the retina (Charles C. Thomas, Springfield, IL).
Raven, M.A., Eglen, S.J., Ohab, J.J., and Reese, B.E. (2003). Determinants of the exclusion zone in dopaminergic amacrine cell mosaics. The Journal of Comparative Neurology 461, 123-136.
Raven, M.A., and Reese, B.E. (2002). Horizontal cell density and mosaic regularity in pigmented and albino mouse retina. The Journal of Comparative Neurology 454, 168-176.
Raven, M.A., Stagg, S.B., and Reese, B.E. (2005). Regularity and packing of the horizontal cell mosaic in different strains of mice. Visual neuroscience 22, 461-468.
Reese, B.E. (2011). Development of the Retina and Optic Pathway. Vision research 51, 613-632.
Reese, B.E. (2012). Retinal Mosaics: Pattern Formation Driven by Local Interactions between Homotypic Neighbors. Frontiers in neural circuits 6, 24.
Reese, B.E., Harvey, A.R., and Tan, S.S. (1995). Radial and tangential dispersion patterns in the mouse retina are cell-class specific. Proc Natl Acad Sci USA 92, 2494-2498.
Reese, B.E., Necessary, B.D., Tam, P.P., Faulkner-Jones, B., and Tan, S.S. (1999). Clonal expansion and cell dispersion in the developing mouse retina. Eur J Neurosci 11, 2965-2978.
Rister, J., and Desplan, C. (2011). The retinal mosaics of opsin expression in invertebrates and vertebrates. Developmental neurobiology 71, 1212-1226.
Rockhill, R.L., Euler, T., and Masland, R.H. (2000). Spatial order within but not between types of retinal neurons. Proceedings of the National Academy of Sciences of the United States of America 97, 2303-2307.
Rodieck, R.W. (1973). The vertebrate retina: principles of structure and function.
Rodieck, R.W. (1991). The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Visual neuroscience 6, 95-111.
Roorda, A.M., A. B. Lennie, P. Williams, D. R. (2001). Packing arrangement of the three cone classes in primate retina. Vision research 41, 1291-1306.
Sarthy, P.V.F., M. (1989). Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization. J Comp Neurol 288, 593-600.
Schmidt, T.M., Do, M.T.H., Dacey, D., Lucas, R., Hattar, S., Matynia, and Anna (2011). Melanopsin-positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 16094-16101.
Schmidt, T.M., and Kofuji, P. (2011). Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol 519, 1492-1504.
Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671-684.
Schultze, M. (1866). Zur Anatomie und Physiologie der Retina (Bonn: Cohen).
Sharma, R.K., and Johnson, D.A. (2000). Molecular signals for development of neuronal circuitry in the retina. Neurochemical research 25, 1257-1263.
Snyder, A.W., Bossomaier, T.J., and Hughes, A.A. (1991). The theory of comparative eye design
Vision (Cambridge University Press).
Stell, W.K., and Witkovsky, P. (1973). Retinal structure in the smooth dogfish, Mustelus canis: light microscopy of photoreceptor and horizontal cells. J Comp Neurol 148, 33-45.
Stenkamp, D.L., Barthel, L.K., and Raymond, P.A. (1997). Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina. The Journal of Comparative Neurology 382, 272-284.
Sterling, P. (1983). Microcircuitry of the cat retina. Annual review of neuroscience 6, 149-185.
Szel, A.D., T. Rohlich, P. (1988a). Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody. J Comp Neurol 273, 593-602.
Szel, A.R., P. (1988b). Four photoreceptor types in the ground squirrel retina as evidenced by immunocytochemistry. Vision research 28, 1297-1302.
Tohya, S.M., A. Iwasa, Y. (1999). Formation of cone mosaic of zebrafish retina. Journal of theoretical biology 200, 231-244.
Tyler, M.J., Carney, L.H., and Cameron, D.A. (2005). Control of cellular pattern formation in the vertebrate inner retina by homotypic regulation of cell-fate decisions. J Neurosci 25, 4565-4576.
Vaney, D.I. (1990). The mosaic of amacrine cells in the mammalian retina. Prog Retin Res 9, 49-100.
Vaney, D.I., and Hughes, A.A. (1990). Is there more than meets the eye? In Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University Press), pp. 74-83.
Vecino, E., Hernandez, M., and Garcia, M. (2004). Cell death in the developing vertebrate retina. The International journal of developmental biology 48, 965-974.
Versaux-Botteri, C., Nguyen-Legros, J., Vigny, A., and Raoux, N. (1984). Morphology, density and distribution of tyrosine hydroxylase-like immunoreactive cells in the retina of mice. Brain research 301, 192-197.
Waid, D.K., and McLoon, S.C. (1998). Ganglion cells influence the fate of dividing retinal cells in culture. Development (Cambridge, England) 125, 1059-1066.
Wassle, H. (2004). Parallel processing in the mammalian retina. Nature reviews Neuroscience 5, 747-757.
Wassle, H., and Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological reviews 71, 447-480.
Wassle, H., Puller, C., Muller, F., and Haverkamp, S. (2009). Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 106-117.
Wassle, H., and Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society of London Series B, Biological sciences 200, 441-461.
Wojtowicz, W.M., Flanagan, J.J., Millard, S.S., Zipursky, S.L., and Clemens, J.C. (2004). Alternative Splicing of Drosophila Dscam Generates Axon Guidance Receptors that Exhibit Isoform-Specific Homophilic Binding. Cell 118, 619-633.
Wojtowicz, W.M., Wu, W., Andre, I., Qian, B., Baker, D., and Zipursky, S.L. (2007). A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130, 1134-1145.
Yamagata, M., and Sanes, J.R. (2008). Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451, 465-469.
Yamagata, M., and Sanes, J.R. (2012). Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 14402-14414.
Yamagata, M., Weiner, J.A., and Sanes, J.R. (2002). Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649-660.
Yamakawa, K., Huot, Y.K., Haendelt, M.A., Hubert, R., Chen, X.N., Lyons, G.E., and Korenberg, J.R. (1998). DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human molecular genetics 7, 227-237.
Young, R.W. (1984). Cell death during differentiation of the retina in the mouse. The Journal of Comparative Neurology 229, 362-373.
Zhan, X.J., and Troy, J.B. (2000). Modeling cat retinal beta-cell arrays. Visual neuroscience 17, 23-39.
Zhan, X.L., Clemens, J.C., Neves, G., Hattori, D., Flanagan, J.J., Hummel, T., Vasconcelos, M.L., Chess, A., and Zipursky, S.L. (2004). Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43, 673-686.
In Appendix:
Abeling, N.G., van Gennip, A.H., Barth, P.G., van Cruchten, A., Westra, M., and Wijburg, F.A. (1998). Aromatic L-amino acid decarboxylase deficiency: a new case with a mild clinical presentation and unexpected laboratory findings. Journal of inherited metabolic disease 21, 240-242.
Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Paper presented at: Cold Spring Harbor symposia on quantitative biology (Cold Spring Harbor Laboratory Press).
Bertoldi, M. (2014). Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition. Archives of biochemistry and biophysics 546, 1-7.
Bons, N., Combes, A., Szafarczyk, A., and Assenmacher, I. (1983). [Extrahypothalamic efferent pathways of the suprachiasmatic nucleus in the rat]. Comptes rendus des seances de l'Academie des sciences Serie III, Sciences de la vie 297, 347-350.
Castel, M., Feinstein, N., Cohen, S., and Harari, N. (1990). Vasopressinergic innervation of the mouse suprachiasmatic nucleus: an immuno-electron microscopic analysis. J Comp Neurol 298, 172-187.
Chen, S.K., Badea, T.C., and Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92-95.
Clark, C.T., Weissbach, H., and Udenfriend, S. (1954). 5-Hydroxytryptophan decarboxylase: preparation and properties. The Journal of biological chemistry 210, 139-148.
Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W., and Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749-754.
Doyle, S.E., McIvor, W.E., and Menaker, M. (2002). Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. Journal of neurochemistry 83, 211-219.
Helman, G., Pappa, M.B., and Pearl, P.L. (2014). Widening Phenotypic Spectrum of AADC Deficiency, a Disorder of Dopamine and Serotonin Synthesis. JIMD reports 17, 23-27.
Hood, S., Cassidy, P., Cossette, M.P., Weigl, Y., Verwey, M., Robinson, B., Stewart, J., and Amir, S. (2010). Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 14046-14058.
Ingram, C.D., Ciobanu, R., Coculescu, I.L., Tanasescu, R., Coculescu, M., and Mihai, R. (1998). Vasopressin neurotransmission and the control of circadian rhythms in the suprachiasmatic nucleus. Progress in brain research 119, 351-364.
Ishida, Y., Yokoyama, C., Inatomi, T., Yagita, K., Dong, X., Yan, L., Yamaguchi, S., Nagatsu, I., Komori, T., Kitahama, K., et al. (2002). Circadian rhythm of aromatic l-amino acid decarboxylase in the rat suprachiasmatic nucleus: gene expression and decarboxylating activity in clock oscillating cells. Genes to Cells 7, 447-459.
Iuvone, P.M., Galli, C.L., Garrison-Gund, C.K., and Neff, N.H. (1978). Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202, 901-902.
Jackson, C.R., Ruan, G.X., Aseem, F., Abey, J., Gamble, K., Stanwood, G., Palmiter, R.D., Iuvone, P.M., and McMahon, D.G. (2012). Retinal dopamine mediates multiple dimensions of light-adapted vision. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 9359-9368.
Montioli, R., Cellini, B., and Borri Voltattorni, C. (2011). Molecular insights into the pathogenicity of variants associated with the aromatic amino acid decarboxylase deficiency. Journal of inherited metabolic disease 34, 1213-1224.
Moore, R.Y., Halaris, A.E., and Jones, B.E. (1978). Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180, 417-438.
Mrosovsky, N., Foster, R.G., and Salmon, P.A. (1999). Thresholds for masking responses to light in three strains of retinally degenerate mice. Journal of comparative physiology A, Sensory, neural, and behavioral physiology 184, 423-428.
Mrosovsky, N., and Hattar, S. (2003). Impaired masking responses to light in melanopsin-knockout mice. Chronobiology international 20, 989-999.
Pearl, P.L. (2013). Monoamine neurotransmitter deficiencies. Handbook of clinical neurology 113, 1819-1825.
Piggins, H.D., and Cutler, D.J. (2003). The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. The Journal of endocrinology 177, 7-15.
Redlin, U., and Mrosovsky, N. (1999). Masking by light in hamsters with SCN lesions. Journal of comparative physiology A, Sensory, neural, and behavioral physiology 184, 439-448.
Reghunandanan, V., and Reghunandanan, R. (2006). Neurotransmitters of the suprachiasmatic nuclei. Journal of Circadian Rhythms 4, 2-2.
Sprouse, J., Reynolds, L., Braselton, J., and Schmidt, A. (2004). Serotonin-induced phase advances of SCN neuronal firing in vitro: a possible role for 5-HT5A receptors? Synapse (New York, NY) 54, 111-118.
Stehle, J.H., von Gall, C., and Korf, H.W. (2003). Melatonin: a clock-output, a clock-input. Journal of neuroendocrinology 15, 383-389.
Terazono, H., Mutoh, T., Yamaguchi, S., Kobayashi, M., Akiyama, M., Udo, R., Ohdo, S., Okamura, H., and Shibata, S. (2003). Adrenergic regulation of clock gene expression in mouse liver. Proceedings of the National Academy of Sciences of the United States of America 100, 6795-6800.
van den Pol, A.N., and Tsujimoto, K.L. (1985). Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15, 1049-1086.
Welsh, D.K., Logothetis, D.E., Meister, M., and Reppert, S.M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697-706.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51637-
dc.description.abstractIn the retina, each type of neuron except photoreceptor rods and cones forms “Retinal mosaics” that covers the whole retina with an even spatial distribution. This pattern assures every horizontal cell, amacrine cell and retinal ganglion cell well-arranged within their layer, covering the entire retina without blind spot and dendrite overlapping. However, the mechanism behind the phenomenon remains unknown.
Recent researchers find the apoptosis may take part in the formation of retina regularity. Mice with the pro-apoptotic gene bax knockout or overexpress of the antiapoptotic gene bcl-2 showed the disrupted spatial pattern. Intriguingly, the same phenotype has been reported in the dscam (Down’s syndrome cell adhesion molecules) knockout mice. Furthermore, in both condition, the dendrites of neighboring cell severely tangle together. Since the drosophila dscam gene participates in the cell-cell recognition using homophilic binding. Therefore, we hypothesize that Dscam may involve the retina apoptotic pathway through the homophilic interaction between the same cell types and lead to apoptosis-dependent retinal mosaic.
Here we cloned the different versions of degenerative DSCAM expressing plasmid, including Full-length, Truncated, Extracellular and Intracellular DSCAM. To prove the DSCAM is crucial for the apoptosis, HEK cell was chosen for transfection. With the time-lapse recording and co-culture experiment, we successfully identified the N-terminal of DSCAM intracellular domain is crucial for triggering apoptosis via intrinsic pathway.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:42:17Z (GMT). No. of bitstreams: 1
ntu-104-R02b21011-1.pdf: 8163724 bytes, checksum: f2046d96162636c49049478973fd11fc (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
Abstract iii
Contents iv
Chapter I Introduction 1
1.1 The development of basic retina structure 1
1.2 Basic circuitry and diversity of the retinal neurons 2
1.3 Retina mosaic 6
1.3.1 Background 7
1.3.2 Definition 7
1.3.3 Analytic method 8
1.3.4 Function and diversity 9
1.3.5 Formation 12
1.4 DSCAM 15
1.4.1 Property of DSCAM 16
Statement of purpose 18
Chapter II Material and Method 19
2.1 Animals 19
2.2 Cloning 19
2.2.1 RNA isolation 19
2.2.2 Reverse transcription 19
2.2.3 Polymerase Chain Reaction (PCR) 20
2.2.4 Subcloning 20
2.3 Cell culture 21
2.3.1 HEK cell 21
2.3.2 Transient expression 21
2.3.3 Cell sorting 22
2.4 Cell imaging 22
2.4.1 Cell mortality 22
2.4.2 Time lapse recording 23
2.4.3 Caspase-3 substrate 23
2.4.4 Mortality analyzing 23
2.5 Immunofluorescence staining 24
2.6 Retina culture 24
2.6.1 Retina acquire 24
2.6.2 Time lapse fluorescence 24
Chapter III Result 25
3.1 The regularity index rising as the apoptosis 25
3.2 Construction of dscam expression plasmid 26
3.3 Visualize the cell death 27
3.4 The N-terminal of DSCAM intracellular domain is critical domain for apoptosis 27
3.5 The apoptosis signal comes from intracellular 28
3.6 Construct conditional inducing plasmid 29
3.7 Identify expression of Dscam protein 29
Chapter IV Discussion 31
4.1 The apoptosis promotes the retinal neuron regularity 31
4.2 The DSCAM protein, especially intracellular domain, mediates the intracellular apoptosis signal 32
4.3 Potential scheme for retinal mosaics 33
Chapter V Significance of Work 35
Chapter VI References 36
Figure 1. Schematic representation of the mouse genetic lines 49
Figure 2. ipRGCs conducts apoptosis during the development 50
Figure 3. Clustered soma died in the apoptosis 51
Figure 4. Developmental apoptosis in retina inhibited by the caspase inhibitor 52
Figure 5. The selective apoptosis raised the Regularity Index (RI) 53
Figure 6. Schematic representation of DSCAM expression plasmid 54
Figure 7. Immunostaining of HEK cells transfected with plasmids 55
Figure 8. DSCAM expressing cells conducted apoptosis 56
Figure 9. Time lapse recording of Full-length DSCAM 57
Figure 10. Time lapse recording of Truncated DSCAM 58
Figure 11. Time lapse recording of DsRed fluorescence protein 59
Figure 12. Time lapse recording of Extracellular DSCAM 60
Figure 13. Mortality of cells transfected with different plasmids 61
Figure 14. Co-culture of Full-length and Extracellular DSCAM 62
Figure 15. Mortality of co-cultured cell transfected with Full-length and Extracellular DSCAM 63
Figure 16. Cre-dependent inducible selective DSCAM intracellular domain expression plasmid 64
Figure 17. Extracted Full-length DSCAM protein 65
Figure 18. Plasmid constructs for dscam without transmembrane domains 66
Figure 19. The DSCAM without transmembrane domain purified by His-tag purification 67
Figure 20. Schematic representation of two dendrites contact 68
Table 1. List of primers for cloning 69
Table 2. Composition of retinal culture medium 70
Table 3. Composition of dissecting buffer 71
Table 4. List of antibodies in this study 71
Appendix I. The actogram of aromatic L-amino acid decarboxylase deficiency mice
72
Appendix II. Coding sequence map of DSCAM 95
Appendix III. Posters 97
dc.language.isoen
dc.title調控神經發育之唐氏症細胞黏著蛋白細胞內區域具有調控細胞凋亡功能之研究zh_TW
dc.titleThe DSCAM intracellular domain regulates the cell survival or programmed cell deathen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee潘建源(Chien-Yuan Pan),王致恬(Chih-Tien Wang),周申如(Shen-Ju Chou)
dc.subject.keyword細胞凋亡,唐氏症細胞黏著蛋白,視網膜發育,細胞分子辨識,zh_TW
dc.subject.keywordDSCAM,apoptosis,retinal mosaic,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2015-12-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved