請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51619
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭哲來(Jer-Lai Kuo) | |
dc.contributor.author | Darwin Barayang Putungan | en |
dc.contributor.author | 普達文 | zh_TW |
dc.date.accessioned | 2021-06-15T13:41:29Z | - |
dc.date.available | 2017-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-06 | |
dc.identifier.citation | Bibliography
[1] S. Dunn, International Journal of Hydrogen Energy, 2002, 27, 235–264. [2] R. Shinnar, Technology in Society, 2003, 25, 455 – 476. [3] K. Maeda and K. Domen, Journal of Physical Chemistry Letters, 2010, 1, 2655– 2661. [4] F. E. Osterloh, Chemical Society Reviews, 2013, 42, 2294–2320. [5] R. Abe, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11, 179–209. [6] H. Reardon, J. M. Hanlon, R. W. Hughes, A. Godula-Jopek, T. K. Mandal and D. H. Gregory, Energy & Environmental Science, 2012, 5, 5951. [7] K. L. Lim, H. Kazemian, Z. Yaakob and W. R. W. Daud, Chemical Engineering and Technology, 2010, 33, 213–226. [8] C. Li, J. Li, F. Wu, S.-S. Li, J.-B. Xia and L.-W. Wang, The Journal of Physical Chemistry C, 2011, 115, 23221–23225. [9] J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara and S. Yip, The Journal of Chemical Physics, 2003, 119, 2376–2385. [10] N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chemical Reviews, 2014, 114, 11636–11682. [11] N. Singh, G. Jabbour and U. Schwingenschlぴogl, European Physical Journal B, 2012, 85, 392–396. [12] Y. Li, Y.-L. Li, C. M. Araujo, W. Luo and R. Ahuja, Catalysis Science and Technology, 2013, 3, 2214–2220. [13] C. Ataca and S. Ciraci, Physical Review B, 2012, 85, 1–6. [14] P. Corbo, F. Migliardini and O. Veneri, in Hydrogen Fuel Cells for Road Vehicles, Springer London, 2011, pp. 103–130. [15] S. McWhorter, C. Read, G. Ordaz and N. Stetson, Current Opinion in Solid State and Materials Science, 2011, 15, 29–38. 103 [16] Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou and J. He, The Journal of Physical Chemistry A, 2013, 117, 14253–60. [17] T. Hussain, B. Pathak, T. Adit Maark, C. Moyses Araujo, R. H. Scheicher and R. Ahuja, Europhysics Letters, 2011, 96, 27013. [18] M. Khazaei, M. S. Bahramy, N. S. Venkataramanan, H. Mizuseki and Y. Kawazoe, Journal of Applied Physics, 2009, 106, 094303. [19] S. Bhatia and A. Myers, Langmuir, 2006, 1688–1700. [20] N. Park, K. Choi, J. Hwang, D. W. Kim, D. O. Kim and J. Ihm, Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19893–9. [21] A. W. C. van den Berg and C. O. Are´an, Chemical Communications, 2008, 668–681. [22] W. Luo, Journal of Alloys and Compounds, 2004, 385, 316. [23] G. Sandrock, Journal of Alloys and Compounds, 1999, 293–295, 877–888. [24] E. Poirier, R. Chahine, P. Benard, D. Cossement, L. Lafi, E. Melancon, T. Bose and S. Desilets, Applied Physics A, 2004, 78, 961–967. [25] J. G. Vitillo, G. Ricchiardi, G. Spoto and A. Zecchina, Physical Chemistry Chemical Physics, 2005, 7, 3948–3954. [26] Z. Yang and J. Ni, Applied Physics Letters, 2012, 100, 183109. [27] Y. S. Wang, P. F. Yuan, M. Li, W. F. Jiang, Q. Sun and Y. Jia, Computational Materials Science, 2012, 60, 181–185. [28] Y. Li, T. Hussain, A. De Sarkar and R. Ahuja, Solid State Communications, 2013, 170, 39–43. [29] S. Bhattacharya, The Journal of Physical Chemistry C, 116, 3840–3844. [30] H. Y. Wu, X. F. Fan, J.-L. Kuo and W.-Q. Deng, Chemical communications, 2010, 46, 883–5. [31] H.-Y. Wu, X. Fan, J.-L. Kuo and W.-Q. Deng, The Journal of Physical Chemistry C, 2011, 115, 9241–9249. [32] C. Ataca, E. Aktぴurk, S. Ciraci and H. Ustunel, Applied Physics Letters, 2008, 93, 043123. [33] C.-C. Huang, N.-W. Pu, C.-A. Wang, J.-C. Huang, Y. Sung and M.-D. Ger, Separation and Purification Technology, 2011, 82, 210–215. 104 [34] Y. Liu, L. Ren, Y. He and H.-P. Cheng, Journal of Physics: Condensed matter, 2010, 22, 445301. [35] S.-H. Huang, L. Miao, Y.-J. Xiu, M. Wen, C. Li, L. Zhang and J.-J. Jiang, Journal of Applied Physics, 2012, 112, 124312. [36] E. Beheshti, A. Nojeh and P. Servati, Carbon, 2011, 49, 1561–1567. [37] H.-L. Park and Y.-C. Chung, Computational Materials Science, 2010, 49, S297– S301. [38] D. Li, Y. Ouyang, J. Li, Y. Sun and L. Chen, Solid State Communications, 2012, 152, 422–425. [39] X.-J. Ye, C.-S. Liu, R. Jia, Z. Zeng and W. Zhong, Physical Chemistry Chemical Physics, 2013, 15, 2507–13. [40] T. Yildirim and S. Ciraci, Physical Review Letters, 2005, 94, 175501. [41] E. Durgun, S. Ciraci, W. Zhou and T. Yildirim, Physical Review Letters, 2006, 97, 226102. [42] M. Li, J. Li, Q. Sun and Y. Jia, Journal of Applied Physics, 2010, 108, 064326. [43] H. Lee, W. I. Choi and J. Ihm, Physical Review Letters, 2006, 97, 056104. [44] S. Azevedo and R. D. Paiva, Europhysics Letters, 2006, 75, 126–132. [45] X.-F. Zhou, J. Sun, Y.-X. Fan, J. Chen, H.-T. Wang, X. Guo, J. He and Y. Tian, Physical Review B, 2007, 76, 100101. [46] A. Liu, R. Wentzcovitch and M. Cohen, Physical Review B, 1989, 39, 1760– 1765. [47] H. Wang, Z. Lu, S. Xu, D. Kong, J. J. Cha, G. Zheng, P.-C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz and Y. Cui, Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19701–6. [48] Y. Zhao, Y. Zhang, Z. Yang, Y. Yan and K. Sun, Science and Technology of Advanced Materials, 2013, 14, 043501. [49] J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, Journal of the American Chemical Society, 2013, 135, 17881–17888. [50] P. G. Moses, B. Hinnemann, H. Tops? e and J. K. N? rskov, Journal of Catalysis, 2009, 268, 201–208. [51] A. Logad´ottir, P. G. Moses, B. Hinnemann, N.-Y. Tops? e, K. G. Knudsen, H. Tops? e and J. K. N? rskov, Catalysis Today, 2006, 111, 44–51. 105 [52] J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. N? rskov and I. Chorkendorff, Faraday Discussions, 2009, 140, 219. [53] H. Vrubel, D. Merki and X. Hu, Energy & Environmental Science, 2012, 5, 6136. [54] C. Ataca, H. ˚ A‾dahin and S. Ciraci, The Journal of Physical Chemistry C, 2012, 116, 8983–8999. [55] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi and W. Tang, Physica B: Condensed Matter, 2011, 406, 2254–2260. [56] I. T. McGovern, R. H. Williams and A. W. Parke, Journal of Physics C: Solid State Physics, 1979, 12, 2689–2704. [57] E. S. Kadantsev and P. Hawrylak, Solid State Communications, 2012, 152, 909–913. [58] S. Leb`egue and O. Eriksson, Physical Review B, 2009, 79, 115409. [59] K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Physical Review Letters, 2010, 105, 136805. [60] J. A. Turner, Science, 2004, 305, 972–974. [61] N. S. Lewis, Nature, 2001, 414, 589–590. [62] Y. Yan, B. Xia, Z. Xu and X. Wang, ACS Catalysis, 2014, 4, 1693–1705. [63] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff and J. K. N?rskov, Journal of the American Chemical Society, 2005, 127, 5308–5309. [64] J. K. N?rskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nature Chemistry, 2009, 1, 37–46. [65] J. K. N?rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, Journal of The Electrochemical Society, 2005, 152, J23. [66] J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff and J. K. N?rskov, Nature Materials, 2006, 5, 909–913. [67] W. Sheng, H. A. Gasteiger and Y. Shao-Horn, Journal of The electrochemical Society, 2010, 157, B1529. [68] I. A. Paˇsti, N. M. Gavrilov and S. V. Mentus, Advances in Physical Chemistry, 2011, 2011, 1–8. [69] Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, Nature Communications, 2014, 5, 3783. 106 [70] Z.-Y. Zhou, N. Tian, Z.-Z. Huang, D.-J. Chen and S.-G. Sun, Faraday Discussions, 2008, 140, 81–112. [71] H. Pan, Scientific Reports, 2014, 4, 5348. [72] M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, Journal of the American Chemical Society, 2013, 135, 10274–10277. [73] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nature Materials, 2013, 12, 850–855. [74] D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nano Letters, 2013, 13, 6222–6227. [75] J. Deng, P. Ren, D. Deng, L. Yu, F. Yang and X. Bao, Energy and Environmental Science, 2014, 7, 1919. [76] Q. Lu, G. S. Hutchings, W. Yu, Y. Zhou, R. V. Forest, R. Tao, J. Rosen, B. T. Yonemoto, Z. Cao, H. Zheng, J. Q. Xiao, F. Jiao and J. G. Chen, Nature Communications, 2015, 6, 6567. [77] M. Tavakkoli, T. Kallio, O. Reynaud, A. G. Nasibulin, C. Johans, J. Sainio, H. Jiang, E. I. Kauppinen and K. Laasonen, Angewandte Chemie International Edition, 2015, 54, 4535–4538. [78] J. K. N?rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, Journal of The Electrochemical Society, 2005, 152, J23. [79] Y. Liu, G.-d. Li, L. Yuan, L. Ge, H. Ding, D. Wang and X. Zou, Nanoscale, 7, 3130–3136. [80] E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, Angewandte Chemie International Edition, 2014, 53, 5427–5430. [81] C. Tsai, F. Abild-Pedersen and J. K. N?rskov, Nano Letters, 2014, 14, 1381– 1387. [82] X. Sun, J. Dai, Y. Guo, C. Wu, F. Hu, J. Zhao, X. Zeng and Y. Xie, Nanoscale, 2014, 6, 8359–67. [83] H. Wang, Z. Lu, S. Xu, D. Kong, J. J. Cha, G. Zheng, P.-C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz and Y. Cui, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 19701–6. [84] C. Tsai, K. Chan, F. Abild-Pedersen and J. K. N?rskov, Physical Chemistry Chemical Physics, 2014, 16, 13156–64. [85] T. F. Jaramillo, K. P. J?rgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, Science, 2007, 317, 100–102. 107 [86] U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj and C. N. R. Rao, Angewandte Chemie International Edition, 2013, 52, 13057–13061. [87] S.-H. Lin and J.-L. Kuo, Physical Chemistry Chemical Physics, 2014, 16, 20763– 71. [88] A. N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan and G. Seifert, Journal of Physical Chemistry C, 2011, 115, 24586–24591. [89] M. Calandra, Physical Review B, 2013, 88, 1–7. [90] T. Hu, R. Li and J. Dong, J. Chem. Phys., 2013, 139, 174702. [91] K.-A. N. Duerloo, Y. Li and E. J. Reed, Nature Communications, 2014, 5, 1–9. [92] A. P. Nayak, T. Pandey, D. Voiry, J. Liu, S. T. Moran, A. Sharma, C. Tan, C.-H. Chen, L.-J. Li, M. Chhowalla, J.-f. Lin, A. K. Singh and D. Akinwande, Nano Letters, 2015, 15, 346–353. [93] R. Gordon, D. Yang, E. Crozier, D. Jiang and R. Frindt, Phys. Rev. B, 2002, 65, 1–9. [94] B. Scrosati, Electrochimica Acta, 2000, 45, 2461–2466. [95] S. Banerjee, G. Periyasamy and S. K. Pati, Journal of Materials Chemistry A, 2014, 2, 3856. [96] S. Chu and A. Majumdar, Nature, 2012, 488, 294–303. [97] M. Armand, Nature, 2001, 414, 359–367. [98] J. B. Goodenough and K. S. Park, Journal of the American Chemical Society, 2013, 135, 1167–1176. [99] N. Yabuuchi and S. Komaba, Science and Technology of Advanced Materials, 2014, 15, 043501. [100] F. Croce, G. B. Appetecchi, L. Persi and B. Scrosati, Nature, 1998, 394, 456– 458. [101] G. Li, Z. Li, P. Zhang, H. Zhang and Y. Wu, Pure and Applied Chemistry, 2008, 80, 2553–2563. [102] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma and G. Ceder, Energy and Environmental Science, 2011, 4, 3680. [103] S. W. Kim, D. H. Seo, X. Ma, G. Ceder and K. Kang, Advanced Energy Materials, 2012, 2, 710–721. 108 [104] A. Ponrouch, D. Monti, a. Boschin, B. Steen, P. Johansson and M. R. Palac´ın, Journal of Materials Chemistry A, 2015, 3, 22–42. [105] A. Bhide, J. Hofmann, A. K. Dぴurr, J. Janek and P. Adelhelm, Physical Chemistry Chemical Physics, 2014, 16, 1987–98. [106] Y. Jing, Z. Zhou, C. R. Cabrera and Z. Chen, Journal of Physical Chemistry C, 2013, 117, 25409–25413. [107] J. Su, Y. Pei, Z. Yang and X. Wang, RSC Advances, 2014, 4, 43183–43188. [108] V. V. Kulish, O. I. Malyi, C. Persson and P. Wu, Physical Chemistry Chemical Physics, 2015, 17, 13921–13928. [109] C. Ling and F. Mizuno, Physical Chemistry Chemical Physics, 2014, 16, 10419– 24. [110] D. Datta, J. Li and V. B. Shenoy, ACS Applied Materials Interfaces, 2014, 6, 1788–1795. [111] H. Zhu, K. T. Lee, G. T. Hitz, X. Han, Y. Li, J. Wan, S. Lacey, A. V. W. Cresce, K. Xu, E. Wachsman and L. Hu, ACS Applied Materials Interfaces, 2014, 6, 4242–4247. [112] D. Er, J. Li, M. Naguib, Y. Gogotsi and V. B. Shenoy, ACS Applied Materials Interfaces, 2014, 6, 11173–11179. [113] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, Science, 2004, 306, 666–669. [114] S. Zhao, W. Kang and J. Xue, Journal of Materials Chemistry A, 2014, 2, 19046–19052. [115] J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang and Y. Xie, Adv. Mater., 2012, 24, 1969–1974. [116] D. Gao, Q. Xue, X. Mao, W. Wang, Q. Xu and D. Xue, J. Mater. Chem. C, 2013, 1, 5909. [117] Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu and B. Huang, ACS Nano, 2012, 6, 1695–1701. [118] H. Zhang, L.-M. Liu and W.-M. Lau, Journal of Materials Chemistry A, 2013, 1, 10821. [119] P. Geerlings, F. De Proft and W. Langenaeker, Chemical Reviews, 2003, 103, 1793–1873. [120] N. M. Harrison, Technology, 1995, 2, 1–26. 109 [121] W. Koch and M. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag, 2nd edn., p. 294. [122] L. H. Thomas, Mathematical Proceedings of the Cambridge Philosophical Society, 1927, 23, 542–548. [123] E. Lieb and B. Simon, Advances in Mathematics, 1977, 116, 22–116. [124] W. Kohn and L. J. Sham, Physical Review, 1965, 140, A1133–A1138. [125] P. A. M. Dirac, Proceedings of the Royal Society of London Series A, 1926, 112, 661–677. [126] P.-O. Lowdin, Physical Review, 1955, 97, 1509–1520. [127] A. Hinchliffe, Molecular Modeling for Beginners, John Wiley and Sons, 2nd edn., 2003, pp. 339–340. [128] U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge University Press, 2001, pp. 190–195. [129] K. Nishikawa and J. Maruani, Quantum Systems in Chemistry and Physics: Progress in Methods and Applications, Dordrecht: Springer, 2013, p. 651. [130] J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13244–13249. [131] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B, 1992, 46, 6671–6687. [132] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B, 1993, 48, 4978–4978. [133] J. P. Perdew, K. Burke, M. Ernzerhof, D. of Physics and N. O. L. . J. Quantum Theory Group Tulane University, Physical Review Letters, 1996, 77, 3865–3868. [134] J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters, 1997, 78, 1396–1396. [135] J. C. V. Klime, D. R. Bowler and A. Michaelides, Phys. Rev. B, 2011, 83, 195131. [136] S. Grimme, Journal of Computational Chemistry, 2006, 27, 1787–99. [137] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, The Journal of Chemical Physics, 2010, 132, 154104. [138] Y. Zhang and W. Yang, Physical Review Letters., 1998, 80, 890–890. [139] V. R. Cooper, Phys. Rev. B, 2010, 81, 161104. 110 [140] J. Carrasco, B. Santra, J. c. v. Klimeˇs and A. Michaelides, Physical Review Letters., 2011, 106, 026101. [141] R. P. Feynman, Physical Review, 1939, 56, 340–343. [142] H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188–5192. [143] P. E. Blぴochl, Phys. Rev. B, 1994, 50, 17953–17979. [144] D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892–7895. [145] G. Henkelman and H. Jo´nsson, Journal of Chemical Physics, 2000, 113, 9978– 9985. [146] D. Sheppard, R. Terrell and G. Henkelman, Journal of Chemical Physics, 2008, 128, 1–10. [147] G. Henkelman, B. P. Uberuaga and H. J?nsson, J. Chem. Phys., 2000, 113, 9901. [148] C. J. Pickard and R. J. Needs, Journal of Physics: Condensed Matter, 2011, 23, 053201. [149] J. P. Chou, C. R. Hsing, C. M. Wei, C. Cheng and C. M. Chang, Journal of Physics: Condensed matter, 2013, 25, 125305. [150] C. Pickard and R. Needs, Physical Review Letters, 2006, 97, 045504. [151] C. J. Pickard and R. J. Needs, physica status solidi (b), 2009, 246, 536–540. [152] G. I. G. Griffiths, R. J. Needs and C. J. Pickard, Physical Review B, 2012, 86, 144102. [153] C. J. Pickard and R. J. Needs, Physical Review Letters., 2006, 97, 045504. [154] C. J. Pickard and R. J. Needs, Physical Review B, 2007, 76, 144114. [155] C. J. Pickard and R. J. Needs, Nature Physics, 2007, 3, 473–476. [156] C. J. Pickard and R. J. Needs, physica status solidi (b), 2009, 246, 536–540. [157] C. J. Pickard and R. J. Needs, Physical Review Letters., 2009, 102, 125702. [158] G. Kresse and J. Hafner, Physical Review B, 1993, 47, 558–561. [159] G. Kresse, Physical Review B, 1996, 54, 11169–11186. [160] Y. Hwang and Y.-C. Chung, Japanese Journal of Applied Physics, 2013, 52, 06GG08. [161] G. Li, I. Tamblyn, V. R. Cooper, H.-J. Gao and J. B. Neaton, Physical Review B, 2012, 85, 121409. 111 [162] Y. Li, D. Wu, Z. Zhou, C. R. Cabrera and Z. Chen, Journal of Physical Chemistry Letters, 2012, 3, 2221–2227. [163] D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao and Y. Cui, Nano letters, 2013, 13, 1341–7. [164] C.-C. Chiu, personal communication, 2016. [165] G. M. Psofogiannakis and G. E. Froudakis, The Journal of Physical Chemistry C, 2009, 113, 14908–14915. [166] J. Im, H. Shin, H. Jang, H. Kim and M. Choi, Nature Communications, 2014, 5, 3370. [167] G. Kresse, Phys. Rev. B, 1996, 54, 11169–11186. [168] S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1, 211–228. [169] J. Moellmann and S. Grimme, Journal of Physical Chemistry C, 2014, 118, 7615–7621. [170] W. Reckien, F. Janetzko, M. F. Peintinger and T. Bredow, Journal of Computational Chemistry, 2012, 33, 2023–2031. [171] A. Togo, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 134106. [172] S. Baroni, S. De Gironcoli, A. Dal Corso and P. Giannozzi, Review of Modern Physics, 2001, 73, 515–562. [173] E. Skulason, V. Tripkovic, M. E. Bjorketun, S. Gudmundsdottir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jonsson and J. K. N?rskov, Journal of Physical Chemistry C, 2010, 114, 22374. [174] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong and R. J. Cava, Nature, 2014, 514, 5–10. [175] D. Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin and R. F. Frindt, Physical Review B, 1991, 43, 12053–12056. [176] B. Hammer and J. N?rskov, Adv. Catal., 2000, 45, 71–129. [177] J. K. N?rskov, F. Abild-Pedersen, F. Studt and T. Bligaard, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 937–943. [178] E. Santos, P. Quaino and W. Schmickler, Physical Chemistry Chemical Physics, 2012, 14, 11224. [179] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nature Materials, 2013, 12, 850–5. 112 [180] C.-H. Chang, X. Fan, S.-H. Lin and J.-L. Kuo, Phys. Rev. B, 2013, 88, 195420. [181] S. Bertolazzi, J. Brivio and A. Kis, ACS Nano, 2011, 5, 9703–9709. [182] M. Ghorbani-Asl, S. Borini, A. Kuc and T. Heine, Phys. Rev. B., 2013, 87, 1–6. [183] M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A. F. Oliveira, A. Kuc and T. Heine, Scientific Reports, 2013, 3, 2961. [184] I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H. D. Wagner and R. Tenne, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 523–528. [185] G. Kresse and J. Furthmぴuller, Computational Materials Science, 1996, 6, 15–50. [186] P. Ganesh, J. Kim, C. Park, M. Yoon, F. A. Reboredo and P. R. C. Kent, J. Chem. Theory Comput., 2014, 10, 5318–5323. [187] X. Fan, W. T. Zheng, J.-L. Kuo and D. J. Singh, ACS Applied Materials Interfaces, 2013, 5, 7793–7. [188] H. Yildirim, A. Kinaci, Z.-J. Zhao, M. K. Y. Chan and J. P. Greeley, ACS Applied Materials Interfaces, 2014, 6, 21141–50. [189] A. H. M. A. Wasey, S. Chakrabarty and G. P. Das, Journal of Applied Physics, 2015, 117, 064313. [190] G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik and A. Du, Journal of Physical Chemistry C, 2015, 119, 13124–13128. [191] D. Nasr Esfahani, O. Leenaerts, H. Sahin, B. Partoens and F. M. Peeters, Journal of Physical Chemistry C, 2015, 150505115644002. [192] C. Ling and F. Mizuno, Physical Chemistry Chemical Physics, 2014, 16, 10419– 24. [193] K. T. Chan, J. B. Neaton and M. L. Cohen, Phys. Rev. B, 2008, 77, 235430. [194] Y. Liu, V. I. Artyukhov, M. Liu, A. R. Harutyunyan and B. I. Yakobson, The Journal of Physical Chemistry Letters, 2013, 4, 1737–1742. [195] K. Nakada and A. Ishii, Solid State Communications, 2011, 151, 13–16. [196] J.-M. Tarascon and M. Armand, Nature, 2001, 414, 359–367. [197] J. Cannarella and C. B. Arnold, Journal of the Electrochemical Society, 2015, 162, A1365–A1373. [198] C. Eames and M. S. Islam, Journal of the American Chemical Society, 2014, 136, 16270–16276. 113 [199] C.-Y. Wang, personal communication, 2016. [200] M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare and C. N. R. Rao, Journal of Physics: Condensed Matter, 2015, 27, 285401. [201] S. Mukhopadhyay and D. A. Stewart, Physical Review B, 2014, 89, 054302. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51619 | - |
dc.description.abstract | In this dissertation, selected two-dimensional (2D) transition metal dichalchogenides (TMDs) were assessed with respect to their potential applications in energy conversion and storage via density functional theory (DFT) calculations and ab-initio random structure searching. It is found that: (1) single-layer Li-decorated MoS2to be able to bind sufficiently high enough H2
molecules for hydrogen storage applications,and that it can also serve as H2 dissociation catalyst with potential use in fuel cell technology; (2) A relatively new 2D TMD structural phase called 1T' was suggested to be the more relevant structure for hydrogen evolution reaction (HER). It is found that basal plane HER activity is present for 1T'-MX (M = Mo, W; X = S, Se, Te) materials, and that this can be further enhanced and tuned by utilizing tensile biaxial strain; and lastly, (3) the recently fabricated single-layer metallic VS2 was shown to be an excellent candidate as sodium-ion battery (NIB) anode due to its inherent conducting nature, very low Na ion diffusion barrier and high specific energy capacity for storing Na ions. These works also demonstrated the versatility of 2D TMDs in a wide range of applications, particularly in energy-related ones, by virtue of their chemical composition and structure. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:41:29Z (GMT). No. of bitstreams: 1 ntu-105-D00222026-1.pdf: 12526776 bytes, checksum: 8d6c26c212a8a36283e438b5c7f12817 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Contents
1 Introduction and Rationale 19 2 Review of Literature 23 2.1 Solid State Hydrogen Storage . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Hydrogen Evolution Reaction (HER) . . . . . . . . . . . . . . . . . . 25 2.3 Metal-ion Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Computational Tools and Methods 29 3.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 The Electron Density and Hohenberg-Kohn Theorems . . . . . . . . . 31 3.2.1 The Thomas-Fermi Model . . . . . . . . . . . . . . . . . . . . 31 3.2.2 Hohenberg-Kohn Theorems and Kohn-Sham Approach . . . . 32 3.2.3 Electronic Exchange and Correlation . . . . . . . . . . . . . . 34 3.3 The Local Density Approximation (LDA) . . . . . . . . . . . . . . . . 36 3.4 The Generalized Gradient Approximation (GGA) . . . . . . . . . . . 37 3.5 Correction Schemes due to Dispersion Forces . . . . . . . . . . . . . . 37 3.6 Computational Scheme in DFT Calculations . . . . . . . . . . . . . . 39 3.7 The Nudged Elastic Band Method . . . . . . . . . . . . . . . . . . . . 40 3.8 Ab-initio Random Structure Searching . . . . . . . . . . . . . . . . . 42 4 Li adsorption, hydrogen storage and dissociation using monolayer MoS2: An ab-initio random structure searching approach 45 4.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9 4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.1 Single Li atom binding on MoS2 . . . . . . . . . . . . . . . . . 47 4.2.2 Two-side Li adsorption and at higher coverage . . . . . . . . . 50 4.2.3 Hydrogen adsorption . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 59 5 A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain 63 5.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.1 1T′-MX2 monolayer properties . . . . . . . . . . . . . . . . . . 65 5.2.2 Hydrogen adsorption on basal plane sites . . . . . . . . . . . . 67 5.2.3 Effects of biaxial tensile strain on Gibbs free energy . . . . . . 72 5.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 75 6 Metallic single-layer VS2 polytypes as promising anode materials for Na-ion battery: ab initio random structure searching 77 6.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.2.1 Adsorption and diffusion of single Na atom on VS2 polytypes . 78 6.2.2 Higher Na concentration configurations . . . . . . . . . . . . . 83 6.2.3 Electrochemical properties . . . . . . . . . . . . . . . . . . . . 89 6.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 90 7 Summary, Conclusion and Prospects 91 7.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 91 7.2 Insights and Future Prospects . . . . . . . . . . . . . . . . . . . . . . 93 Appendix 96 Bibliography 102 | |
dc.language.iso | en | |
dc.title | 二維過渡金屬二硫屬化物
能源轉換和存儲:密度 密度泛函理論研究 | zh_TW |
dc.title | Two-dimensional Transition Metal Dichalcogenides
for Energy Conversion and Storage: Density Functional Theory Study | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 張嘉升(Chia-Seng Chang) | |
dc.contributor.oralexamcommittee | 魏金明(Ching-Ming Wei),林敏聰(Minn-Tsong Lin),關肇正(Chao-Cheng Kaun) | |
dc.subject.keyword | 密度泛函理論,電子結構計算,材料建模, | zh_TW |
dc.subject.keyword | Density Functional Theory,Electronic Structure Calculations,Materials Modeling, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 12.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。