請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51616
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹建和 | |
dc.contributor.author | Zong-Min Lin | en |
dc.contributor.author | 林宗民 | zh_TW |
dc.date.accessioned | 2021-06-15T13:41:21Z | - |
dc.date.available | 2018-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2016-01-06 | |
dc.identifier.citation | 1. Borsboom, J.M.G., et al., Harmonic chirp imaging method for ultrasound contrast agent. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 2005. 52(2): p. 241-249.
2. Szabo, T.L., Chapter 14 - Ultrasound Contrast Agents, in Diagnostic Ultrasound Imaging: Inside Out (Second Edition), T.L. Szabo, Editor. 2014, Academic Press: Boston. p. 605-651. 3. Hoff, L., Acoustic characterization of contrast agents for medical ultrasound imaging. 2001: Springer. 4. de Jong, N., Acoustic properties of ultrasound contrast agents. 1993: Erasmus MC: University Medical Center Rotterdam. 5. Quaia, E., Physical Basis and Principles of Action of Microbubble-based Contrast Agents, in Contrast Media in Ultrasonography, E. Quaia, Editor. 2005, Springer Berlin Heidelberg. p. 15-30. 6. Frinking, P.J.A., et al., Ultrasound contrast imaging: current and new potential methods. Ultrasound in Medicine & Biology, 2000. 26(6): p. 965-975. 7. GORCE, J.-M., M. ARDITI, and M. SCHNEIDER, Influence of Bubble Size Distribution on the Echogenicity of Ultrasound Contrast Agents: A Study of SonoVue™. Investigative Radiology, 2000. 35(11): p. 661-671. 8. Sontum, P.C., Physicochemical Characteristics of Sonazoid™, A New Contrast Agent for Ultrasound Imaging. Ultrasound in Medicine & Biology, 2008. 34(5): p. 824-833. 9. Quaia, E., Microbubble ultrasound contrast agents: an update. European Radiology, 2007. 17(8): p. 1995-2008. 10. Faez, T., et al., 20 years of ultrasound contrast agent modeling. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 2013. 60(1). 11. Davidson, B.P. and J.R. Lindner, Future applications of contrast echocardiography. Heart, 2012. 98(3): p. 246-253. 12. 魏宏憲, 超音波對比劑成像之最佳發射頻率選擇, in 電信工程學研究所. 2014, 臺灣大學. p. 1-50. 13. Hoff, L., P.C. Sontum, and J.M. Hovem, Oscillations of polymeric microbubbles: Effect of the encapsulating shell. The Journal of the Acoustical Society of America, 2000. 107(4): p. 2272-2280. 14. Gramiak, R. and P.M. Shah, Echocardiography of the aortic root. Invest Radiol, 1968. 3(5): p. 356-66. 15. Quaia, E., Classification and Safety of Microbubble-Based Contrast Agents, in Contrast Media in Ultrasonography, E. Quaia, Editor. 2005, Springer Berlin Heidelberg. p. 3-14. 16. de Jong, N., et al., Ultrasonic characterization of ultrasound contrast agents. Medical & Biological Engineering & Computing, 2009. 47(8): p. 861-873. 17. de Jong, N., et al., Absorption and scatter of encapsulated gas filled microspheres: Theoretical considerations and some measurements. Ultrasonics, 1992. 30(2): p. 95-103. 18. Frinking, P.J.A. and N. de Jong, Acoustic Modeling of Shell-Encapsulated Gas Bubbles. Ultrasound in Medicine & Biology, 1998. 24(4): p. 523-533. 19. Shi, W.T. and F. Forsberg, Ultrasonic characterization of the nonlinear properties of contrast microbubbles. Ultrasound in Medicine & Biology, 2000. 26(1): p. 93-104. 20. Meer, S.M.v.d., et al., The resonance frequency of SonoVue (tm) as observed by high-speed optical imaging, in IEEE Ultrasonics Symposium, 2004. 2004, IEEE: Montréal, Canada. p. 343-345. 21. Meer, S.M.v.d., Ultrasound contrast agents : resonances of coated bubbles. 2007. p. 149. 22. Minnaert, M., XVI. On musical air-bubbles and the sounds of running water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933. 16(104): p. 235-248. 23. De Jong, N., et al., “Compression-Only” Behavior of Phospholipid-Coated Contrast Bubbles. Ultrasound in Medicine & Biology, 2007. 33(4): p. 653-656. 24. Renaud, G., et al., Chirp resonance spectroscopy of single lipid-coated microbubbles using an “acoustical camera”. The Journal of the Acoustical Society of America, 2012. 132(6): p. EL470-EL475. 25. Cosgrove, D., Ultrasound contrast agents: An overview. European Journal of Radiology, 2006. 60(3): p. 324-330. 26. Maresca, D., et al. Acoustic size distribution analyzer for microbubbles. in Proceedings - IEEE Ultrasonics Symposium. 2009. 27. Bouakaz, A., et al., On the effect of lung filtering and cardiac pressure on the standard properties of ultrasound contrast agent. Ultrasonics, 1998. 36(1-5): p. 703-8. 28. Stride, E. and N. Saffari, Investigating the significance of multiple scattering in ultrasound contrast agent particle populations. IEEE Trans Ultrason Ferroelectr Freq Control, 2005. 52(12): p. 2332-45. 29. Kang, S.T. and C.K. Yeh, Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J, 2012. 35(2): p. 125-39. 30. Stride, E. and N. Saffari, Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H, 2003. 217(6): p. 429-47. 31. Rayleigh, L., VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine Series 6, 1917. 34(200): p. 94-98. 32. Plesset, M., The dynamics of cavitation bubbles. Journal of applied mechanics, 1949. 16: p. 277-282. 33. Noltingk, B.E. and E.A. Neppiras, Cavitation produced by Ultrasonics. Proceedings of the Physical Society. Section B, 1950. 63(9): p. 674. 34. de Jong, N., Mechanical index. Eur J Echocardiogr, 2002. 3(1): p. 73-4. 35. Shankar, P.M., P. Dala Krishna, and V.L. Newhouse, Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med Biol, 1998. 24(3): p. 395-9. 36. Averkiou, M.A. Tissue harmonic imaging. in Ultrasonics Symposium, 2000 IEEE. 2000. 37. Lencioni, R., D. Cioni, and C. Bartolozzi, Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound. Eur Radiol, 2002. 12(1): p. 151-65. 38. Burns, P.N., S.R. Wilson, and D.H. Simpson, Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast. Invest Radiol, 2000. 35(1): p. 58-71. 39. Che-Chou, S. and S. Tai-Yu, Golay-encoded excitation for dual-frequency harmonic detection of ultrasonic contrast agents. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 2011. 58(2): p. 349-356. 40. Chiao, R.Y. and H. Xiaohui. Coded excitation for diagnostic ultrasound: a system developer's perspective. in Ultrasonics, 2003 IEEE Symposium on. 2003. 41. Takeuchi, Y. Chirped excitation for <-100 dB time sidelobe echo sounding. in Ultrasonics Symposium, 1995. Proceedings., 1995 IEEE. 1995. 42. Pulse Compression, in Radar Signal Analysis and Processing Using MATLAB. 2008, Chapman and Hall/CRC. p. 315-351. 43. Menigot, S., et al. Improvement of the power response in contrast imaging with transmit frequency optimization. in Ultrasonics Symposium (IUS), 2009 IEEE International. 2009. 44. Ming-Huang, C. and T. Jenho. Optimal Transmission Frequency Selection Base on Scattering Cross Section for Ultrasound Contrast Harmonic Imaging. in Biomedical Engineering and Biotechnology (iCBEB), 2012 International Conference on. 2012. 45. Hoff, L. Bubblesim. Available from: http://home.online.no/~fam.hoff/Bubblesim/Bubblesim.htm. 46. Borsboom, J.M.G., C.T. Chin, and N. de Jong, Nonlinear coded excitation method for ultrasound contrast imaging. Ultrasound in Medicine & Biology, 2003. 29(2): p. 277-284. 47. Borsboom, J., C. Ting Chin, and N. de Jong, Experimental evaluation of a non-linear coded excitation method for contrast imaging. Ultrasonics, 2004. 42(1–9): p. 671-675. 48. Tsao, J. and M.-H. Chen, An Adaptive Pulse Compression Filter for Ultrasound Contrast Harmonic Imaging. Engineering, 2013. 49. Goertz, D.E., N. de Jong, and A.F. van der Steen, Attenuation and size distribution measurements of Definity and manipulated Definity populations. Ultrasound Med Biol, 2007. 33(9): p. 1376-88. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51616 | - |
dc.description.abstract | 超音波對比劑是粒徑小於7微米受殼層包覆的氣泡,一旦對比劑在被製造出來,群集分佈於一空間中,其濃度、粒徑分佈會隨著時間持續變化,回波訊號的特性也會持續改變。
編碼發射-脈波壓縮系統是能夠提升CTR的技術,發射端使用線性唧聲訊號,增強訊號能量;接收端,考慮到對比劑的非線性響應,需要特定的脈波壓縮濾波器來匹配。前人基於諧波成像的概念設計SQL脈波壓縮濾波器,然而其設計上無法滿足實際狀況,無法隨對比劑粒徑分佈變化而調整。 本論文中提出一個基於諧波成像方法及回波訊號統計特性設計的適應性脈波壓縮濾波器,視對比劑回波訊號為隨機程序,透過對回波訊號頻譜估測以取得對比劑分佈特性,並從估測的頻譜中決定、調整濾波器參數,使此濾波器能夠隨回波頻譜特性而達到適應性的能力。 從效能分析的結果看來對比劑粒徑分佈越集中,APCF有較佳的效能,然而若對比劑粒徑呈瑞雷分佈,APCF的效能提升不太顯著,與SQLPCF效能十分接近。此外,發射訊號頻率、頻寬也是影響APCF效能的主要因素,因此僅有在特定情況下,APCF才會有顯著的效能增強表現。 | zh_TW |
dc.description.abstract | Ultrasound contrast agents are shelled air bubbles whose diameter is less than 7 micrometer. After being reconstituted, ultrasound contrast agents form a population suspending in the medium, and concentration as well as size distribution of the population are always changing so that echoes from the population changing, too.
Coded excitation-pulse compression system is a technique to increase CTR. In this study, linear chirp is chosen to be the signal of coded excitation for transmitting, and, considering the nonlinear response of ultrasound contrast agents, a specific pulse compression filter should be designed at receiving end. In previous research, based on the concept of harmonic imaging, a kind of pulse compression filter, called SQLPCF, had been published. SQLPCF, however, failed to adapt to the fact that size distribution is changing all the time. In this study, based on the concept of harmonic imaging and statistical properties of echo signal, an adaptive pulse compression filter, APCF, has been proposed. The parameters of APCF are determined from the estimated Power Spectral Density of echoes, which are modeled as a random process. Due to estimated Power Spectral Density, parameters of APCF have the information of size distribution of UCAs so that APCF is able to adapt to all circumstances. The results of performance analysis show that APCF works better when the size distribution is narrow, but, however, when the size distribution is Rayleigh-like, performance of APCF, comparing with that of SQLPCF, improves slightly. Besides, frequency and bandwidth of transmitting signal also dominate the performance of APCF. Thus, performance of APCF will improve significantly only under some specific circumstances. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:41:21Z (GMT). No. of bitstreams: 1 ntu-104-R02945005-1.pdf: 3632544 bytes, checksum: 51431b61b328b16bdef49d3b515df969 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 第1章 緒論 1
1-1 醫用超音波對比劑成像簡介 1 1-2 超音波對比劑成像的問題 3 1-3 研究目標 3 第2章 超音波對比劑成像 5 2-1 醫用超音波成像 5 2-2 超音波對比劑 6 2-2.1 對比劑種類 7 2-2.2 對比劑殼層參數 8 2-2.3 對比劑共振 9 2-2.4 對比劑線性、非線性響應 11 2-2.5 對比劑群集分佈 12 2-2.6 對比劑群集效應 17 2-2.7 對比劑振盪模型 18 2-3 增強超音波對比劑影像的成像方法 20 2-3.1 諧波成像 20 2-3.2 脈波反相 21 2-3.3 編碼發射脈波壓縮系統 22 2-4 超音波編碼發射-脈波壓縮系統架構 25 2-5 最佳發射訊號頻率 26 2-6 對比劑振盪模擬程式 27 第3章 SQL脈波壓縮濾波器設計缺陷 28 3-1 SQL脈波壓縮濾波器 28 3-2 對比劑回波訊號分析 30 3-2.1 單顆對比劑回波訊號分析 30 3-2.2 對比劑群集分佈回波訊號分析 31 3-3 SQLPCF效能與粒徑分佈關係 34 3-4 適應性脈波壓縮濾波器設計 36 3-4.1 諧波頻譜估測方法 37 3-4.2 適應性脈波壓縮濾波器參數計算 38 第4章 適應性脈波壓縮濾波器效能評估 40 4-1 對比劑單一粒徑分佈下APCF效能分析 40 4-1.1 模擬設置 40 4-1.2 特定發射訊號之APCF效能探討(單一粒徑) 42 4-1.3 最佳發射訊號之APCF效能探討 45 4-2 對比劑群集分佈下APCF效能分析 47 4-2.1 模擬設置 47 4-2.2 對比劑濃度與頻譜估測探討 48 4-2.3 特定發射訊號之APCF效能探討(瑞雷分佈) 54 第5章 討論 59 第6章 結論 61 第7章 附錄 62 7-1 縮寫 62 7-2 BUBBLESIM 資料格式 63 第8章 參考資料 65 | |
dc.language.iso | zh-TW | |
dc.title | 基於超音波對比劑諧波訊號統計特性之適應性脈波壓縮濾波器效能分析 | zh_TW |
dc.title | Performance Analysis of the Adaptive Pulse Compression Filter Based on Statistical Properties of Ultrasound Contrast Harmonic | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅孟宗,張儀中 | |
dc.subject.keyword | 超音波對比劑,編碼發射-脈波壓縮,諧波成像,適應性濾波器,頻譜估測, | zh_TW |
dc.subject.keyword | Ultrasound contrast agent,Pulse compression,Harmonic imaging,Adaptive filter,Spectrum estimation, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。