Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51607
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志達
dc.contributor.authorYi-Pin Luen
dc.contributor.author盧一斌zh_TW
dc.date.accessioned2021-06-15T13:40:57Z-
dc.date.available2019-02-15
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2016-01-07
dc.identifier.citation[1] Cisco, “Cisco visual networking index: global mobile data traffic forecast update 2014-2019 White Paper,” CISCO Incorporated,” White paper.
[2] ETSI, “Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Delivery Protocols (CDP), Implementation Guidelines; Part 1: IP Datacast over DVB-H,” European Telecommunications Standards Institute (ETSI), TS 102 591 V1.3.1, Feb. 2010. [Online]. Available: http://www.dvb.org/technology/standards/
[3] 3GPP, “Technical Specfication Group Services and System Aspects; Multimedia Broadcast/Multicast Service; Protocols and codecs,” 3rd Generation Partnership Project (3GPP), TS 26.346, 2012. [Online]. Available:
ftp://ftp.3gpp.org/specs/html-info/26346-CRs.htm
[4] C. Wang, R. Chang, J. Ho, and S. Hsu, “Rate-sensitive ARQ for realtime video streaming,” in Proc. IEEE Glob. Comm. Conf. (GLOBECOM), vol. 6, Dec. 2003,
pp. 3361–3365.
[5] H. Wei, Y. Tsai, and C. Lin, “Prioritized retransmission for error protection of video streaming over WLANs,” in Proc. IEEE Symp. Circuits and Systems (ISCAS),
vol. 2, May 2004, pp. 5–8.
[6] J. Bolot, S. F. Parisis, and D. Towsley, “Adaptive FEC-based error control for internet telephony,” in Proc. IEEE Conf. on Computer Commun. (INFOCOM), vol. 3, Mar. 1999, pp. 1453–1460.
[7] J. Rosenberg, L. Qiu, and H. Schulzrinne, “Integrating packet FEC into adaptive voice playout buffer algorithms on the internet,” in Proc. IEEE Conf. on Computer Commun. (INFOCOM), vol. 3, Mar. 2000, pp. 1705–1714.
[8] P. Frossard and O. Verscheure, “Joint source/FEC rate selection for quality-optimal mpeg-2 video delivery,” IEEE Trans. Image Processing, vol. 10, no. 12, pp. 1815–1825, Dec. 2001.
[9] P. Frossard, “FEC performance in multimedia streaming,” IEEE Commun. Lett., vol. 5, no. 3, pp. 122–124, Mar. 2001.
[10] M. Luby and A. Shokrollahi and M. Watson and T. Stockhammer and L. Minder, “RaptorQ forward error correction scheme for object delivery,” Internet Engineering Task Force (IETF), TS RFC6330, Aug. 2011. [Online]. Available: http//:tools.ietf.org/html/rfc6330
[11] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain approach to reliable distribution of bulk data,” ACM SIGCOMM Computer Communication Review, vol. 28, no. 4, pp. 56–57, 1998.
[12] M. Xiao, M. M'edard, and T. Aulin, “A binary coding approach for combination networks and general erasure networks,” in Proc. IEEE Int. Symp. Information
Theory (ISIT), Oct. 2007, pp. 786–790.
[13] M. Xiao, T. Aulin, and M. M´edard, “Systematic binary deterministic rateless codes,” in Proc. IEEE Int. Symp. Information Theory (ISIT), 2008, pp. 2066–2070.
[14] M. Rabbani and R. Joshi, “An overview of the JPEG2000 still image compression standard,” Signal Processing: Image Communication, vol. 17, no. 1, pp. 3–48, 2002.
[15] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1103–1120, 2007.
[16] X. Yang, C. Zhu, Z. Li, X. Lin, and N. Ling, “An unequal packet loss resilience scheme for video over the internet,” IEEE Trans. Multimedia, vol. 7, no. 4, pp.
753–765, Aug. 2005.
[17] Y. Zhang, S. Qin, and Z. He, “Transmission distortion-optimized unequal loss protection for video transmission over packet erasure channels,” in IEEE International
Conference on Multimedia and Expo(ICME), 2011, pp. 1–6.
[18] T. Tillo, E. Baccaglini, and G. Olmo, “Unequal protection of video data according to slice relevance,” IEEE Trans. Image Processing, vol. 20, no. 6, pp. 1572–1582, 2011.
[19] H. Ha, J. Park, S. Lee, and A. Bovik, “Perceptually unequal packet loss protection by weighting saliency and error propagation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 9, pp. 1187–1199, 2010.
[20] A. Majumda, D. Sachs, I. Kozintsev, K. Ramchandran, and M. Yeung., “Multicast and unicast real-time video streaming over wireless LANs,” IEEE Trans. Circuits
Syst. Video Technol., vol. 12, no. 6, pp. 524–534, 2002.
[21] T. Szigeti and C. Hattingh., End-to-End QoS Network Design: Quality of Service in LANs, WANs, and VPNs (Networking Technology). Cisco Press, 2004.
[22] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2551–2567, 2006.
[23] M. Luby, “LT codes,” in Proc., 43rd annual IEEE symp. on Foundations of Computer Science (FOCS), Nov. 2002, pp. 271–280.
[24] P. Cataldi, M. Shatarski, M. Grangetto, and E. Magli, “Implementation and performance evaluation of LT and Raptor codes for multimedia applications,” in Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Dec. 2006, pp. 263–266.
[25] L. Hu, S. Nooshabadi, and T. Mladenov, “Forward error correction with RaptorQ code on GPU,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2013, pp. 281–284.
[26] T. Mladenov, S. Nooshabadi, and K. Kim, “Implementation and evaluation of
Raptor codes on embedded systems,” IEEE Trans. Computers, vol. 60, no. 12, pp. 1678–1691, Dec. 2011.
[27] P. J. Ferreira, B. Jesus, J. Vieira, and A. Pinho, “The rank of random binary matrices and distributed storage applications,” IEEE Commun. Lett., vol. 17, no. 1, pp. 151–154, 2013.
[28] G. H. Golub and C. F. V. Loan, Matrix computations. Baltimore, Maryland: The Johns Hopkins University Press, 1996.
[29] E. Bodine and M. Cheng, “Characterization of luby transform codes with small message size for low-latency decoding,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2008, pp. 1195–1199.
[30] C. Chen, Y. Chen, T. Shen, and J. Zao, “On the optimization of degree distributions in LT code with covariance matrix adaptation evolution strategy,” in IEEE Congress on Evolutionary Computation (CEC2010), July 2010, pp. 1–8.
[31] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. Piechocki, “Expanding window fountain codes for unequal error protection,” IEEE Trans. Commun., vol. 57, Sept. 2009.
[32] S. Arslan, P. Cosman, and L. Milstein, “Generalized unequal error protection LT codes for progressive data transmission,” IEEE Trans. Image Processing, vol. 21,
no. 8, pp. 3586–3597, Aug. 2012.
[33] M. Shokrollahi, S. Lassen, and R. Karp, “Systems and processes for decoding chain reaction codes through inactivation,” Feb. 2005, US Patent 6,856,263.
[34] M. Luby and A. Shokrollahi and M. Watson and T. Stockhammer, “Raptor forward error correction scheme for object delivery,” Internet Engineering Task Force (IETF), TS RFC5053, 2007. [Online]. Available: http//:tools.ietf.org/html/rfc5053
[35] Z. Quan, W. Xu, D. Shi, and Z. Yang, “An improved algorithm of 3GPP mbms raptor codes,” in International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA’10), vol. 1, Mar. 2010, pp. 492–495.
[36] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, “Reliable multimedia download delivery in cellular broadcast networks,” IEEE Trans. Broadcast., vol. 53, no. 1, pp. 235–246, 2007.
[37] M. Luby and A. Shokrollahi, “Raptor codes,” Found. Trends Commun. Inf. Theory, vol. 6, no. 3-4, pp. 213–222, Mar. 2009.
[38] 3GPP, “Rationale for MBMS AL-FEC Enhancements,” 3rd Generation Partnership Project (3GPP), TS Tdoc S4-110449.
[39] S. Kim, S. Lee, and S. Chung, “An efficient algorithm for ML decoding of raptor codes over the binary erasure channel,” IEEE Commun. Lett., vol. 12, no. 8, pp. 578–580, 2008.
[40] IEEE, “TGn channel models,” IEEE, TS 802.11-03/940r4, 2004.
[41] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 243–250, June 1996.
[42] S. T. Chung and A. Goldsmith, “Degrees of freedom in adaptive modulation: a unified view,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561–1571, 2001.
[43] K. Brueninghaus, D. Astely, T. Salzer, S. Visuri, A. Alexiou, S. Karger, and G. A. Seraji, “Link performance models for system level simulations of broadband radio
access systems,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications(PIMRC), vol. 4, 2005, pp. 2306–2311.
[44] J. C. Ikuno, M. Wrulich, and M. Rupp, “System level simulation of lte networks,” in Proc. IEEE Vehicular Tech. Conf. (VTC), May 2010, pp. 1–5.
[45] N. Rahnavard, B. Vellambi, and F. Fekri, “Rateless codes with unequal error protection property,” IEEE Trans. Inform. Theory, vol. 53, no. 4, pp. 1521–1532, 2007.
[46] H. Lu, J. Cai, and C. H. Foh, “Joint unequal loss protection and LT coding for layer-coded media delivery,” in Proc. IEEE Glob. Comm. Conf. (GLOBECOM),
Dec. 2010, pp. 1–5.
[47] U. C. Kozat and S. A. Ramprashad, “Unequal error protection rateless codes for scalable information delivery in mobile networks,” in Proc. IEEE Conf. on Computer Commun. (INFOCOM), May 2007, pp. 2316–2320.
[48] P. Cataldi, M. Grangetto, T. Tillo, E. Magli, and G. Olmo, “Sliding-window Raptor codes for efficient scalable wireless video broadcasting with unequal loss protection,”
IEEE Trans. Image Processing, vol. 19, no. 6, pp. 1491–1503, 2010.
[49] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. J. Piechocki, “Expanding window fountain codes for unequal error protection,” IEEE Trans. Commun., vol. 57, no. 9, pp. 2510–2516, 2009.
[50] C. Hellge, D. Gomez-Barquero, T. Schierl, and T. Wiegand, “Layer-aware forward error correction for mobile broadcast of layered media,” IEEE Trans. Multimedia,
vol. 13, no. 3, pp. 551–562, 2011.
[51] Z. Chen, L. Yin, M. Xu, and J. Lu, “Rateless codes with progressive recovery for layered multimedia delivery,” in Proc. IEEE Vehicular Tech. Conf. (VTC), 2012, pp. 1–5.
[52] V. Chande and N. Farvardin, “Progressive transmission of images over memoryless noisy channels,” IEEE J. Select. Areas Commun., vol. 18, no. 6, pp. 850–860, 2000.
[53] P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped chan-
nels,” IEEE Transactions on Communications, vol. 43, no. 2/3/4, pp. 773–775, Feb. 1995.
[54] R. F. H. Fischer and J. B. Huber, “A new loading algorithm for discrete multi-tone transmission,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio
Communications(PIMRC), vol. 1, Nov. 1996, pp. 724–728.
[55] F. Bo, X. Yang, D. Hongmei, and Z. Hui, “A survey of cross-layer designs in wireless networks,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, p. 110, 2014.
[56] B. Fu, D. Staehle, G. Kunzmann, E. Steinbach, and W. Kellerer, “QoE-based SVC layer dropping in LTE networks using content-aware layer priorities,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 12, no. 1, pp. 7:1–7:23, 2015.
[57] V. Joseph, S. Borst, and M. I. Reiman, “Optimal rate allocation for video streaming in wireless networks with user dynamics,” IEEE/ACM Transactions on Networking, no. 99, pp. 1–16, 2015.
[58] D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 1998.
[59] M. Kumar and D. Hirschberg, “An efficient implementation of batcher’s odd-even merge algorithm and its application in parallel sorting schemes,” IEEE Transactions on Computers, vol. C-32, no. 3, pp. 254–264, 1983.
[60] A. Bogdanov, M. Mertens, C. Paar, J. Pelzl, and A. Rupp, “A parallel hardware architecture for fast gaussian elimination over GF(2),” in IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM), 2006, pp. 237–248.
[61] H. Liu and G. Li, OFDM-based broadband wireless networks: design and optimization. Hoboken, New Jersey: John Wiley & Sons, Inc., 2005.
[62] R. Khalili and K. Salamatian, “A new analytic approach to evaluation of packet error rate in wireless networks,” in Proc. 3rd Annual Commun. Networks and Services Research Conf., May 2005, pp. 333–338.
[63] N. Yin, S. Q. Li, and T. Stern, “Congestion control for packet voice by selective packet discarding,” IEEE Trans. Commun., vol. 38, no. 5, pp. 674–683, 1990.
[64] Z. Y. Ding, C. Y. Chen, and T. D. Chiueh, “Design of a MIMO-OFDM baseband receiver for next-generation wireless LAN,” in Proc. IEEE Symp. Circuits and Systems (ISCAS), May 2006, pp. 5651–5654.
[65] S. Zhu, “Viterbi hdl code generator (VHCG),” 2004, [Online].
Available:http://sourceforge.net/projects/viterbi-gen/.
[66] IEEE Standard for Information technology, “802.11n-Local and metropolitan area networks-Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput,” 2009, [Online]. Available: https://standards.ieee.org/findstds/standard/802.11n-2009.html.
[67] T. T. Cheung, M. S. So, R. S. Cheng, and K. B. Letaief, “Adaptive unequal error protection and VLC reshuffling for image transmission over wireless channels,” in Proc. IEEE Vehicular Tech. Conf. (VTC), vol. 2, May 2000, pp. 800–804.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51607-
dc.description.abstract為了要避免無線網路中重傳機制所造成的延遲效應,在無線串流系統中有大量的具有無碼率限制特性的湧泉碼設計被提出且廣泛應用。湧泉碼可以保留部分解碼過的資訊,並且一邊繼續解碼所接收的符元。當累積到超過預定的正確接收的符元量後,原本之資訊傳輸序列就可以完整地正確解出。我們在論文中提出一個使用了湧泉碼和可適性多進多出(multiple-input multiple-output) 正交分頻調變(orthogonal frequency division multiplexing) 無線網路技術之影像串流跨層最佳化演算法。當我們使用了可適性正交分頻調變技術再配合實際的通道狀態訊息,我們就可以調整傳輸之吞吐量來改善湧泉碼狀態下的無線通道效率。這個使用多進多出正交分頻調變無線網路技術之資源分配演算法可以讓所提出之無線影像串流系統與傳統的系統相比有8 dB的改善。
當考慮到其硬體實現的可行性時,當要實現湧泉碼中最先進的迅捷碼時會需要執行大維度的矩陣反轉,其維度會高達2^{16}。所以我們在論文中提供了一個基於索引機制之演算法來改善在線(online)迅捷碼解碼演算法。與使用相同在線解碼機制演算法的傳統迅捷碼相比,我們可以將演算法複雜度由矩陣維度之三次方減化到維度之二次方。而後我們使用了90 nm製造技術來實現了可重新配置之迅捷碼解碼器晶片。這顆晶片可以達到7 Mbps的吞吐量來達成SDTV 解析度下之壓縮影像無線傳輸且只需要52.7 mW 之功率耗能。此外,我們提出了另一個基於Sherman-Morrison定律之解碼演算法來達成非在線(offline)之迅捷碼解碼演算法。與一般的在線迅捷碼解碼演算法相比,其複雜度只需要原先之6.5 %。基於此演算法,我們實現了高效能之硬體設計且使用了Xilinx Kintex-7 FPGA板來驗證其設計。其吞吐量可以達到 46.5 Mbps,為使用前演算法之硬體設計的兩倍,且耗能沒有增加。
最後,我們提出了一個包含低複雜度湧泉碼解碼器之即時無線影像串流的原型設計展示。配合此高效能之湧泉碼解碼器,我們所提出使用FPGA實現之迅捷碼解碼器可以完全符合下一世代之無線影線串流系統之規格需求。因此,我們使用FPGA 來實現了迅捷碼和多進多出正交分頻調變無線解碼器進而達到即時之無線影像串流系統;搭配了RF 前端元件和軟體實現之影像編解碼器,我們完成了即時無線影像串流原型系統之設計、實現、以及驗證。
zh_TW
dc.description.abstractIn order to avoid retransmission latency, Fountain codes, also known as rateless codes, have been widely proposed and applied in the designs for streaming systems. Fountain
codes retain the partially decoded information, and continue to receive and decode the coded symbols until the number of accumulated correctly received coded symbols exceeds a pre-determined threshold, and then the complete information sequence can be recovered. This thesis presents a novel solution to cross-layer optimization for fountain code-based video streaming over adaptive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) wireless networks. Armed with the adaptive OFDM in combination with the practical channel state information, the transmission throughput can be adjusted in order to improve channel efficiency when fountain codes are used. A resource allocation algorithm is proposed for wireless video streaming using MIMO-OFDM that achieves an improvement in SNR of 8 dB over the conventional approach.
When considering the feasibility of hardware implementation, RaptorQ code, the most advanced solution for fountain code, requires that a huge matrix inversion be
performed, typically in a dimension of up to 2^{16}. This thesis offers an index-based algorithm that is helpful in improving the online decoding of the RaptorQ decodingii
algorithm, employing the same decoding mechanism as the conventional RaptorQ, but reducing the computational complexity from cubic to quadratic. Then, an IC implementation of a configurable RaptorQ decoder in 90 nm technology is presented. This chip achieves an average throughput of 7 Mbps at a power consumption of only 52.7 mW, while supporting compressed video streaming at a quality of up to SDTV (720x480). Furthermore, a low-complexity RaptorQ decoding algorithm is proposed that uses the Sherman-Morrison formula to achieve offine decoding of the RaptorQ decoding algorithm. Compared to the online RaptorQ decoding algorithm, the complexity of the proposed RaptorQ decoding algorithm is only 6.5%. Thus, based on this algorithm, a high performance hardware implementation is designed, and validated using a Xilinx Kintex-7 FPGA board. The throughput of the proposed design reaches 46.5 Mbps, which is more than twice that of previous works, while consuming almost the same power.
The thesis finally provides a prototype for how a real-time wireless video streaming system that includes a low latency RaptorQ code will function. Exploiting the high-performance RaptorQ decoder, the FPGA implementation for the proposed RaptorQ decoder is able to fully meet the requirements for the next-generation of wireless video streaming systems. Hence, an FPGA implementation of both a RaptorQ decoder and
a MIMO-OFDM receiver for a real-time wireless video streaming system is presented. Together with an RF front-end and a progressive video codec implemented via software,
the design, implementation, and validation of a prototype for a high-performance real-time wireless video streaming system are accomplished.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:40:57Z (GMT). No. of bitstreams: 1
ntu-104-D96943006-1.pdf: 6598545 bytes, checksum: 5907afc243e17543ab9b5b09f8a14dc0 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Introduction 1
1.1 Next-Generation Wireless Video Streaming Systems . . . . . . . . . . . . 1
1.1.1 A Brief Introduction to Fountain Codes . . . . . . . . . . . . . . . 4
1.1.2 Cross-Layer Optimization for Wireless Video Streaming Systems . 7
1.2 Motivation for the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Organization and Contribution of the Thesis . . . . . . . . . . . . . . . . 11
2 A Brief Introduction to Fountain Codes 15
2.1 Fountain Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 LT Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Raptor Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Construction of Raptor Code . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Inactivation Decoding . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 The Failure Probability of Raptor Code . . . . . . . . . . . . . . . 35
2.4 RaptorQ Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 The Analysis of Raptor Codes using Different GF . . . . . . . . . 36
2.4.2 Permanent Inactivation . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Systematic Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.4 The Design for a RaptorQ Code and Analysis of its Failure Prob-
ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 RaptorQ Codec System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Design of the RaptorQ Decoder . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 Gaussian Elimination (GE) . . . . . . . . . . . . . . . . . . . . . 46
2.6.2 The Two-stage RaptorQ ML Decoding Algorithm . . . . . . . . . 47
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3 System Design for Fountain Code-based Wireless Video Streaming 51
3.1 Data Transmission by Using the RaptorQ Code . . . . . . . . . . . . . . 51
3.2 Proposed Wireless Video Streaming System . . . . . . . . . . . . . . . . 53
3.3 An Adaptive SVD MIMO-OFDM System . . . . . . . . . . . . . . . . . . 56
3.3.1 Adaptive Bit Loading . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Adaptive OFDM Performance . . . . . . . . . . . . . . . . . . . . 58
3.4 Rateless Codes for a Wireless Video Streaming System . . . . . . . . . . 59
3.4.1 RaptorQ Code in the Application Layer . . . . . . . . . . . . . . 60
3.4.2 Studies Related to UEP using the RaptorQ Code . . . . . . . . . 61
3.5 Cross-Layer Optimization for Wireless Video Streaming . . . . . . . . . . 64
3.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Proposed Resource Allocation Algorithm . . . . . . . . . . . . . . 66
3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4 Indexed-Based RaptorQ Decoder and its Hardware Implementation 77
4.1 RaptorQ Decoder Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.1 Index-based ML RaptorQ Decoder . . . . . . . . . . . . . . . . . 82
4.1.2 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.3 Practical Hardware Implementation . . . . . . . . . . . . . . . . . 86
4.2 Architecture of the Parallel RaptorQ Decoder/PEs . . . . . . . . . . . . 88
4.3 Hardware Design for the SMRD . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Cache-based Tabulating Indices Architecture for the SMRD . . . 92
4.3.2 Module Architecture Design for the SMRD . . . . . . . . . . . . . 93
4.4 Hardware Design for the DMRD . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 System Architecture for the RaptorQ Decoder . . . . . . . . . . . . . . . 102
4.5.1 Two-stage Matrix Decoder System Architecture . . . . . . . . . . 102
4.5.2 Dual-Decoder Row-Parallel Scheduling . . . . . . . . . . . . . . . 103
4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.1 Chip Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 108
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5 High-Performance RaptorQ Decoder and its Hardware Implementation 113
5.1 Recursive Decoding using the Sherman-Morrison Formula . . . . . . . . . 114
5.1.1 Determination of the Size of the TCGM for Offine Pre-calculation 115
5.1.2 Recursive Computation for the Inverse of Matrix ˇD . . . . . . . . 116
5.2 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 Hardware Design for the High Performance RaptorQ Decoder . . . . . . 122
5.3.1 Modification of the Decoding Algorithm using the Sherman-Morrison Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 Demonstration of Fountain Code-Based Real-Time Wireless Video Streaming 129
6.1 System Description and Packet Format . . . . . . . . . . . . . . . . . . . 130
6.1.1 RaptorQ Code in the Application Layer . . . . . . . . . . . . . . 132
6.1.2 Progressive Video Stream Encoding in the Application Layer . . . 133
6.1.3 MIMO-OFDM Transceiver and Convolutional Codec in the Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.1.4 Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Hardware Implementation and FPGA Verification . . . . . . . . . . . . . 137
6.2.1 Hardware Design for the MIMO-OFDM Receiver . . . . . . . . . 137
6.2.2 Hardware Design for RaptorQ decoder . . . . . . . . . . . . . . . 138
6.3 System-Level Integration and Experimental Validation . . . . . . . . . . 139
6.3.1 Cooperating hardware/software integration . . . . . . . . . . . . . 139
6.3.2 Field Trial Results . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7 Conclusion 143
dc.language.isoen
dc.subject晶片設計zh_TW
dc.subject湧泉碼zh_TW
dc.subject迅捷碼zh_TW
dc.subject多進多出正交分頻調變zh_TW
dc.subjectFountain codesen
dc.subjectRaptorQ codeen
dc.subjectMIMO-OFDMen
dc.subjectIC Designen
dc.title應用跨層最佳化與湧泉碼之即時無線影像串流設計與實現zh_TW
dc.titleDesign and Implementation of Real-Time Wireless Video Streaming using Cross-Layer Optimization and Fountain Codesen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳安宇,蘇柏青,楊家驤,張錫嘉,吳仁銘
dc.subject.keyword湧泉碼,迅捷碼,多進多出正交分頻調變,晶片設計,zh_TW
dc.subject.keywordFountain codes,RaptorQ code,MIMO-OFDM,IC Design,en
dc.relation.page158
dc.rights.note有償授權
dc.date.accepted2016-01-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved