請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51606
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李宗徽 | |
dc.contributor.author | Wen-Husan Chang | en |
dc.contributor.author | 張文瑄 | zh_TW |
dc.date.accessioned | 2021-06-15T13:40:54Z | - |
dc.date.available | 2016-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-08 | |
dc.identifier.citation | [1] D. L. Hawksworth. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research 95, 641-655 (1990)
[2] 王也珍等人,自然界中的真菌。國立自然科學博物館。 [3] 香港特別行政區政府發展局綠化、園境及樹木管理組,香港市區樹木常見的樹木腐朽菌簡介,香港特別行政區政府發展局報告,p26 (2015)。 [4] J. Howie. Penicillin: 1929-40. Br Med J (Clin Res Ed) 293, 158-159 (1986) [5] A. H. Aly., et al. Fifty years of drugs discovery from fungi. Fungal Diversity 50, 3-19 (2011) [6] 吳天鳴等人,細菌的抗藥性,科學發展,364 (2003) 。 [7] 郭傑民等人,海洋微生物天然物,科學發展,479 (2012)。 [8] J. John., et al. Development of the cephalosporin C fermentation taking into account the instability of cephalosporin C. Biotechnology Letters 8, 543-548 (1988) [9] Y. Hu., et al. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs 13, 202-221 (2015) [10] F. S. Laroux., et al. Role of nitric oxide in inflammation. Acta Physiologica Scandinavica 173, 113-118 (2001). [11] Y. C. Chen., et al. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. Journal of Cellular Physiology 177, 324-333 (1998). [12] C. Nathan, et al. Nitric oxide as a secretory product of mammalian cells. The FASEB journal:official publication of the Federation of American Societies for Experimental Biology 6, 3051-3064 (1992). [13] D. A. Wink., et al. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology & Medicine 25, 434-456 (1998). [14] 吳龍溪,不完全菌亞群,中山自然科學大辭典,台灣商務印書館,第4版,p489~492 (1972)。 [15] 陳金亮,台灣不完全菌絲孢綱之分類學研究,台灣大學植物病蟲害研究所博士論文,547 (1994)。 [16] 曾顯雄,絲孢菌之鑑定,檢疫防疫植物病原真菌鑑定與管理研討會,p50~78 (2004)。 [17] 羅朝村等人,菌海戰術–有益木黴菌的應用,科學發展,p391 (2007)。 [18] S. Irina, et al. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47, 55-64 (2006) [19] L. R. Tulasne., et al. Selecta Fungorum Carpologia: Nectriei- Phacidiei- Pezizei. Fungus 3, (1865) [20] P. Chaverri., et al. Hypocrea/Trichoderma (Hypocreales, Hypocreaceae) : Species with Green Ascospores. Studies in Mycology 48, 1-119 (2003) [21] Tochinai., et al. Trans. Sapporo nat. Hist. Soc 12, 24 (1931) [22] Rifai., et al. Mycological Papers 116, 38 (1969) [23] P.K. Tarus., et al. Bull. Chem. Soc. Ethiop 17, 185-190 (2003) [24] R. Scarselletti., et al. In Vitro activity of 6-pentyl-a-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98, 1207-1209 (1994) [25] I. Takahiro., et al. Cytosporone S with antimicrobial activity, isolated from the fungus Trichoderma sp. FKI-6626. Bioorg Med Chem Lett 23, 679- 681 (2013) [26] E. Antonio., et al. Viridepyronone, a new antifungal 4-substituted 2H-pyran-2-one produced by Trichoderma viride. J. Agric. Food Chem 51,6957-6960 (2003) [27] F. Almassi., et al. New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54, 396-402 (1991) [28] E. L. Ghisalberti., et al. Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56, 1799-1804 (1993) [29] R. W. Dunlop., et al. An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J Nat Prod 52, 67-74 (1989) [30] J. S. Moffatt., et al. Viridiol, a steroid-like product from Trichoderma viride. J Chem Soc Chem Commun 14, 839 (1969) [31] S. A. Hyssain., et al. Microbiological chemistry part I. Isolation and characterization of gliotoxin, ergosterol, palmitic acid, mannitol-metabolites of Trichoderma harzianum bainier. Pak. H. Sci. Ind. Res 18, 221-243 (1977) [32] S. Singh., et al. Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17, 26-29 (2005) [33] J. M. Dickinson., et al. Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1, 1885- 1887 (1989) [34] F. Vinale., et al. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett App Microbiol 43, 143-148 (2006) [35] F. Vinale., et al. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72, 2032-2035 (2009) [36] B. Wu., et al. Two New Antibiotic Pyridones Produced by a Marine Fungus, Trichoderma sp. Strain MF106. Mar. Drugs 12, 1208-1219 (2014) [37] N. Claydon., et al. Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 30, 3802- 3803 (1991) [38] A. Ordentlich., et al. Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochemistry 31, 485-486 (1992) [39] F. Takashi., et al. Trichocyalides A and B, new inhibitors of alkaline phosphatase activity in bone morphogenetic protein-stimulated myoblasts, produced by Trichoderma sp. FKI-5513. J Antibiot 65, 565–569 (2012) [40] A. Taro., et al. Cytotoxic substances produced by ta fungal strain from a sponge: physic-chemical properties and structures. J Antibiot 51, 33-40 (1997) [41] F. Vinale., et al. Cerinolactone, a hydroxy- lactone derivative from Trichoderma cerinum. J Nat Prod 75, 103-106 (2012) [42] J. L. Reino., et al. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7, 89-123 (2008) [43] A. Tamura., et al. Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28, 161-162 (1975) [44] T. R. Pyke., et al. U-21,963, a new antibiotic. I. Discovery and biological activity. Appl Microbiol 14, 506-510 (1966) [45] C. E. Meyer., et al. U-21,963, a new antibiotic. II. Isolation and characterization. Appl Microbiol 14, 511-512 (1966) [46] M. Nobuhara., et al. A fungal metabolite, novel isocyano epoxide. Chem Pharm Bull 24, 832-834 (1976) [47] C.R. Howell., et al. Selective isolation from soil and separation in vitro of P and Q strains of Trichoderma virens with differential media. Mycologia 91, 930-934 (1999) [48] P. K. Mukherjee., et al. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76, 2345-2352 (2010) [49] P. K. Mukherjee., et al. Trichoderma research in the genome era. Annu Rev Phytopathol 51, 105-129 (2013) [50] R. Traber., et al. New cyclopeptides from Trichoderma polysporum Rifai: cyclosporins B, D and E. Helv. Chim. Acta, 60, 1568 (1977) [51] H. Mohr., et al. Alamethicin biosynthesis: acetylation of the amino terminus and attachment of phenylalaninol. Biochim. Biophys. Acta 526, 375 (1978) [52] H. Brueckner., et al. Paracelsin, a peptide antibiotic containing alpha -aminoisobutyric acid, isolated from Trichoderma reesei Simmons. Experientia 39, 528 (1983) [53] C. A. Guette., et al. Isolation and sequence analysis of the peptide antibiotics trichorzins PA from Trichoderma harzianum. J. Am. Chem. Soc 114, 2170 (1992) [54] C. A. Guette., et al. Structural elucidation of trikoningins KA and KB, peptaibols from Trichoderma koningii. J. Chem. Soc., Perkin Trans 1, 249 (1993) [55] A. Iida., et al. Fungal metabolites. XVI. Structures of new peptaibols, trichokindins I-VII, from the fungus Trichoderma harzianum. Chem. Pharm. Bull 42, 1070 (1994) [56] J. F. Daniel., et al. Peptaibols of Trichoderma.. Nat. Prod. Rep 24, 1128–1141 (2007) [57] S. Hlimi., et al. Trichorzins HA and MA, antibiotic peptides from Trichoderma harzianum. II. Sequence determination. J. Antibiot 48, 1254 (1995) [58] A. Ritieni., et al. Paracelsin E, a new peptaibol from Trichoderma saturnisporum. J. Nat. Prod 58, 1745 (1995) [59] S. Rebuffat., et al. Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J. Chem. Soc., Perkin Trans 1, 1849 (1995) [60] I. Augeven-Bour., et al. Harzianin HB I, an 11-residue peptaibol from Trichoderma harzianum: isolation, sequence, solution synthesis and membrane activity. J. Chem. Soc., Perkin Trans 1, 1587 (1997) [61] S. Rebuffat., et al. Two unprecedented natural Aib-peptides with the (Xaa-Yaa-Aib-Pro) motif and an unusual C-terminus: structures, membrane-modifying and antibacterial properties of pseudokonins KL III and KL VI from the fungus Trichoderma pseudokoningii. J. Pept. Sci 6 , 519. (2000) [62] G. Leclerc., et al. Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma longibrachiatum. J. Nat. Prod 64, 164–170 (2001) [63] H. Bruecker., et al. Proceedings of the 27th European Peptide Symposium, September (2002) [64] M. M. Benkada., et al. New short peptaibols from a marine Trichoderma strain. Rapid Commun. Mass Spectrom 20, 1176 (2006) [65] X. Y. Song., et al. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol. Lett 260, 119 (2006) [66] T. Benitez., et al. Bio- control mechanisms of Trichoderma strains. Int. Microbiol 7, 249–260 (2004) [67] Y. L. Shu., et al. Study on the Anthraquinones Separated from the Cultivation of Trichoderma harzianum Strain Th-R16 and Their Biological Activity. J. Agric. Food Chem 57, 7288–7292 (2009) [68] C. Jeerapong., et al. Trichoharzianol, a New Antifungal from Trichoderma harzianum F031. J. Agric. Food Chem 63, 3704−3708 (2015) [69] M. Kobayashi., et al. Trichoharzin, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Micale Cecilia. Trtrahedron letters 34, 7925-7928 (1993) [70] F. Song., et al. Trichodermaketones A-D and 7-O-Methyl- koninginin D from the Marine Fungus Trichoderma koningii. J. Nat. Prod 73, 806–810 (2010) [71] T. Ishii., et al. Cytosporone S with antimicrobial activity, isolated from the fungus Trichoderma sp. FKI-6626. Bioorganic & Medicinal Chemistry Letters 23, 679–681 (2013) [72] P. Pruksakorn., et al. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorganic & Medicinal Chemistry Letters 20, 3658–3663 (2010) [73] F. A. Mac ́ıas., et al. Bioactive Carotanes from Trichoderma virens. J. Nat. Prod 63, 1197-1200 (2000) [74] P. Seephonkai., et al. Transformation of an Irregularly Bridged Epidithiodi -ketopiperazine to Trichodermamide A. Org. Lett 8 (14), 3073-3075 (2006) [75] Y. Ltoh., et al. Structure of gliocladic acid. J Antibiot 35 (4), 541-542 (1982) [76] S. H. Wu., et al. Sesquiterpenoids from the Endophytic Fungus Trichoderma sp. PR-35 of Paeonia delavayi. Chem Biodivers 8 (9), 1717-1723 (2011) [77] G. H. Li., et al. Three new acorane sesquiterpenes from Trichoderma sp. YMF1.02647. Phytochemistry Letters 4, 86–88 (2011) [78] T. H. Lee., et al. A New Cytotoxic Agent from Solid-State Fermented Mycelium of Antrodia camphorata. Planta Letter 73, 1-3 (2007). N. Glagovich., et al. Spectroscopic Identification of Organic Compounds, Central Connecticut State University, 316 (2003). [79] P. Joseph-Nathan., et al. Spectroscopy 9, 47−54 (1991) [80] F. Fe ́lix., et al. Determining the Absolute Stereochemistry of Secondary Diols by 1H NMR: Basis and Applications. J. Org. Chem 70, 3778-3790 (2005) [81] S. D. Micco., et al. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts. Beilstein J. Org. Chem 9, 2940-2049 (2013) [82] I. Ohtani., et al. High-field FT NMR application of Mosher’s method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc. 113, 4092-4096 (1991) [83] A. Faramak., et al. New antibiotics from strains of Trichoderma harzianum. J. Nat. Prod 54, 396–402 (1991) [84] C. Norman., et al. Harzianolide, a metabolite isolated from cultures of the fungus Trichoderma harzianum. Phytochemistry 11, 3802–3803 (1991) [85] O. Jirawan., et al. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT 39 1214–1220 (2006) [86] E. M. Hetrick., et al. Analytical chemistry of nitric oxide. Annual Review of Analytical Chemistry 2, 409-433 (2009) [87] R. Ramajayam., et al. Synthesis and antiproliferative activity of some diaryldiazepines and diarylpyrimidines. Journal of Enzyme Inhibition and Medical Chemistry 22 (6), 716-721 (2007) [88] O. H. Hans., et al. Identification of cephalosporin-resistant Staphylococcus aureus with the disk diffusion method. Antimicorbial agents and vhemotherapy 5, 422-426 (1972) [89] 何振隆等人,精油之抗菌活性,林業研究專訊,p31-37 (2008)。 [90] N. Harada., et al. Exciton chirality method and its application to configurational and conformational studies of natural products. Acc. Chem. Res. 5, 257 (1972) [91] J. Frelek., et al. Transition metal complexes as auxiliary chromophores in chiroptical studies on carbohydrates Curr. Org. Chem. 3, 117 (1999) [92] J. Frelek., et al. Dinuclear Transition Metal Complexes as Auxiliary Chromophores in Chiroptical Studies on Bioactive Compounds. Curr. Org. Chem. 7, 1081 (2003) [93] J. Frelek., et al. Chiroptical properties of steroid 1,3-diaxial diols in the presence of [Mo2(OAc)4]. Fresenius J. Anal. Chem. 345, 683-687 (1993) [94] M.Gόrecki., et al. Practical Method for the Absolute Configuration Assignment of tert 1,2-Diols Using Their Complexes with Mo2(OAc)4. Pol. J. Chem. 80, 523 (2006) [95] E. B. Scott., et al. Phylogenomic analysis of polyketide synthase-encoding genes in Tricshoderma. Microbiology 158, 147-154 (2012) [96] T. Asai., et al. Structural diversity of new C13-polyketides produced by Chaetomiun mollipilium cultivated in the presence of a NAD+ - dependent histone deacetylase inhibitor. Org. Lett. 14, 5456-5459 (2012) [97] B. Li., et al. New C13 lipids from marine-drived fungus Trichoderma harziaum. J Asian Nat Prod Res 17, 468-474 (2015) [98] K. H. Sharp., et al. Localization of Candidatus Endobugula sertula and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. The ISME Journal 1, 693-702 (2007) [100] F. Cai., et al. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73, 106-113 (2013) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51606 | - |
dc.description.abstract | 利用抑制誘導型一氧化氮合成酶 (inducible Nitric Oxide Synthase, iNOS) 的活性分析平台來篩選真菌培養株,以篩選出具有抗發炎活性的真菌株,發現某些菌株的醱酵培養液可抑制lipopolysaccharides (LPS) -induced RAW264.7細胞之一氧化氮的產生。同時由抗菌活性評估,顯示某菌株之粗萃物可抑制革蘭氏陽性金黃色葡萄球菌 (Staphylococcus aureus) 的生長,而後選定細翼枝菜 (Pterocladiella capillacea) 內生真菌Trichoderma harzianum NTOU4253進行其化學成分分析。接著以PDY (Peptone Dextrose Yeast) 液態培養基加以擴大培養,對其醱酵液所含代謝產物進行分析、分離與純化,計獲得6個化合物,藉由各種光譜分析決定其平面結構,進一步由Mosher反應後與文獻比對,始確認其絕對立體。其中4個為新化合物,定為trichoharol A (1)、trichoharol B (4)、trihcoharol C (5) 以及 (−)-harzianolide (6),另外2個為已知化合物,harzianumols A (2) 與harzianumols B (3),皆屬於多聚酮類 (polyketide) 化合物。在活性試驗上,本研究發現相對於對照組,化合物2 、 4與5對於LPS-induced RAW264.7細胞產生之一氧化氮顯示有抑制效果,其半抑制濃度 (IC50) 分別為31.1、51.3及19.7 μM,且對於RAW264.7細胞不具毒殺特性。正對照組aminoguanidine及 Nω-nitro-L-arginine (L-NNA) 的半抑制濃度 (IC50) 分別為22.3 ± 0.3和146.4 ± 0.7 μM。同時,化合物5對於金黃色葡萄球菌 (S. aureus) 相較於對照組具有抑制效果,其抑菌圈大小為15.0 ± 0.3 mm。正對照組tetracycline之抑菌圈大小為25.0 ± 0.1 mm。 | zh_TW |
dc.description.abstract | Bioassay-guided fractionation and separation of the active component from Trichoderma harzianum NTOU4253 resulted in the isolation of six compounds 1-6. Their structurues were determined to be linear C13 polyketides, and four new compounds were named trichoharol A (1), trichoharol B (4), trihcoharol C (5) and (−)-harzianolide (6), together with previously reported two polyketide-type C13 lipids harzianumols A (2) and harzianumols B (3). Compound 2, 4 and 5 exhibited moderate to potent inhibitory activity on NO production of RAW264.7 cells induced by lipopolysaccharide (LPS) with IC50 values of 31.1, 51.3 and 19.7 μM, respectively, without any cytotoxicity. The IC50 values of the positive controls, aminoguanidine and Nω-nitro-L-arginine (L-NNA), were 22.3 ± 0.3 and 146.4 ± 0.7 μM, respectively. Compound 5 exhibited slight antimicrobial activities against Staphylococcus aureus with 15.0 ± 0.3 mm inhibition zone compared to positive control-tetracycline with inhibition zone of 25.0 ± 0.1 mm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:40:54Z (GMT). No. of bitstreams: 1 ntu-105-R01b45007-1.pdf: 10108745 bytes, checksum: a0aceabad3a4bfe34e4ceba90cc61108 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii 目錄 iii 縮寫表 xii 第一章 緒論與研究目的 1 1-1 緒論 1 1.2 研究目的 5 第二章 文獻回顧 6 2.1分類地位與介紹 6 2.2 Trichoderma 屬真菌成分之文獻回顧 7 第三章 實驗結果 26 3.1 Trichoderma harzianum NTOU4253培養液分離流程 26 3.11化合物1 – 6 28 3.2 天然物結構分析 29 3.21 Trichoharol A (1) 之結構解析 29 3.22 Harzianumols A (2) 之結構解析 39 3.23 Harzianumols B (3) 之結構解析 47 3.24 Trichoharol B (4) 之結構解析 54 3.25 Trichoharol C (5) 之結構解析 63 3.26 (-)-Harzianolide (6) 之結構解析 70 3.3 各成分之物理數據 77 3.4 抑菌試驗 79 3.5 一氧化氮產生之活性抑制及細胞存活度測定 81 第四章 實驗方法 85 4.1 儀器設備與試劑 85 4.11 化合物物理性質測定儀器 85 4.12 高效能液態層析系統 85 4.12 低壓管柱色層層析系統 85 4.14 試劑耗材與溶劑 86 4.15 真菌培養基 86 4.16 細菌培養基 86 4.2 材料 87 4.21 真菌材料 87 4.22 細菌材料 87 4.3 真菌培養與成分分離 87 4.31 培養基製備 87 4.32 真菌發酵液萃取 88 4.33 粗萃物成分之分離與純化 88 4.4 Mosher 酯化反應試驗 (Mosher ester analysis) 89 4.41目的 89 4.42原理 89 4.43 實驗步驟-製備化合物1 / 2酯化物 90 4.44 實驗步驟-製備化合物4酯化物 90 4.5 一氧化氮產生之活性抑制試驗 91 4.51目的 91 4.52檢測原理 91 4.53 RAW264.7細胞培養 91 4.54實驗步驟 92 4.6 細胞存活度試驗 93 4.61 目的 93 4.62 檢測原理 94 4.63 實驗步驟 95 4.7 抗菌活性評估 95 4.71 目的 95 4.72 檢測原理 95 4.73 測試菌種 95 4.74 實驗步驟 96 第五章 討論 98 第六章 參考文獻 101 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣細翼枝菜內生真菌 Trichoderma harzianum NTOU4253之成分研究 | zh_TW |
dc.title | Chemical constituents from a red algae-associated fungus Trichoderma harzianum NTOU4253 isolated from Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭曜豪,周宏農,彭家禮,汪貴珍 | |
dc.subject.keyword | 真菌,Trichoderma harzianum,抗菌,誘導型一氧化氮合成?,多聚酮類, | zh_TW |
dc.subject.keyword | fungi,Trichoderma harzianum,Hypocreaceae,nitric oxide,polyketide,trichoharol,antimicrobial activity, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-08 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 9.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。