請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51595
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李允中(Jonathan Lee) | |
dc.contributor.author | Ting-Wei Liu | en |
dc.contributor.author | 劉庭瑋 | zh_TW |
dc.date.accessioned | 2021-06-15T13:40:25Z | - |
dc.date.available | 2016-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2016-01-13 | |
dc.identifier.citation | [1] S. GAUCH AND J. CHAFFEE, 'Ontology-based personalized search and browsing,' Web Intelligence and Agent Systems: An International Journal 1, pp. 219-234, 2003.
[2] S. CALEGARI AND G. PASI, 'Personal ontologies: Generation of user profiles based on the YAGO ontology,' Information Processing and Management 49, pp. 640-658, 2013. [3] M. GOLEMATI, A. KATIFORI, C. VASSILAKIS, G. LEPOURAS AND C. HALATSIS, 'Creating an Ontology for the User Profile: Method and Applications,' in Proceedings of the first RCIS conference, 2007. [4] ČERNILOVSKÝ, MILOŠ. 2014. “Personal Ontology: Modeling, Construction and Evolution.” National Taiwan University, Master Thesis [5] JIEXUN LI, RONG ZHENG, and HSINCHUN CHEN, “From Fingerprint To Writeprint”, April 2006/Vol. 49, No. 4 Communications of the ACM [6] JUSTESON and KATS, “Technical Terminology: some linguistic properties and an algorithm for identification in text”. Natural Language Engineering, Cambridge University Press, 1995 [7] NANDI, A. AND JAGADISH, H.V. 2007. Effective phrase prediction. In Proceedings of the International Conference on Very Large Data Bases (VLDB’07). 219–230 [8] FADI MOHSEN and MOHAMMED SHEHAB, “Android Keylogging Threat”,9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing 2013. [9] I.-E. E. A. LIAO, 'A personal ontology model for library recommendation system.,' in Digital Libraries: Achievements, Challenges and Opportunities, Springer Berlin Heidelberg, 2006, pp. 173-182. [10] V. E. A. KATIFORI, 'OntoPIM: how to rely on a personal ontology for Personal Information Management,' in Semantic Desktop Workshop, 2005. [11] R. SOCHER, J. BAUER, C. D. MANNING and A. Y. NG, 'Parsing With Compositional Vector Grammars,' in Proceedings of ACL 2013. [12] T. PEDERSEN, S. PATWARDHAN and J. MICHELIZZI, 'WordNet::Similarity - Measuring the Relatedness of Concepts,' in Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), San Jose, CA, 2004. [13] A. BUDANITSKY and G. HIRST, 'Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures,' in Workshop on WordNet and Other Lexical Resources, 2001. [14] M. A. FINLAYSON, 'Java Libraries for Accessing the Princeton Wordnet: Comparison and Evaluation,' in Proceedings of the 7th Global Wordnet Conference, Tartu, Estonia, 2014. [15] AHMED SABBIR ARIF, and WOLFGANG STUERZLINGER, “Analysis of Text Entry Performance Metrics”, in Proc. IEEE TIC-STH 2009. IEEE New York (2009), 100-105 [16] CHRISTINA L. JAMES and KELLY M. REISCHEL, “Text Input for Mobile Devices: Comparing Model Prediction to Actual Performance”, SIGCHI’01, March 31-April 4, 2001, Seattle, WA, USA. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51595 | - |
dc.description.abstract | 近年個人化已快速成為一個在任何軟體系統上不可或缺的使用者體驗,尤其是需要和用戶直接互動的介面,更需要提供使用者獨一無二的體驗。因為每個人感知世界的方式各不相同,因此規格統一的軟體解決方案將逐漸式微。透過個人化,人們能有更高的機會取得有用的結果,無論結果落入或超出使用者期待都能有效提升使用者體驗。
本論文旨在塑模和建構一個完整的個人本體論系統,同時該系統也能與時俱進。本研究將該系統應用於行動裝置輸入法上,作為鍵盤的預測引擎。建構在個人本體論之鍵盤能從使用者行動裝置中的訊息提取出現頻率高、相似度高的詞彙,並向使用者推薦最合適的選項。鍵盤不僅會根據個人寫作風格來推薦下一個詞彙,也會持續學習用戶的使用習慣,提供更為實用的預測。 | zh_TW |
dc.description.abstract | Nowadays, personalization is fast becoming a must have in any system that directly interacts with a user. The reason is because different people have different views towards the world that they perceive, as a result one size fit all software solutions are on the edge of becoming obsolete. By personalization, we can achieve a higher chance that people obtain the results that they anticipate either consciously or unconsciously, which in turn provide the users with an overall improved experience.
The goal of this thesis is to create a system that generates users’ Personal Ontologies based on their personal writings which are extracted from their mobile smartphones. These ontologies are used for refining users’ queries by keywords that the users are not only interested in, but also important words in their day to day vocabulary. As a result the Personal Ontology has been designed to function as a prediction engine suggesting the optimal next words whilst typing in a software keyboard. Not only is this keyboard already based on a person’s writing style, but it will continue to become more intelligent, in that it provides more accurate predictions as time goes by. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:40:25Z (GMT). No. of bitstreams: 1 ntu-104-R02944044-1.pdf: 4058350 bytes, checksum: 040e8c841b399cba4ef492d6f9b387e0 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Table of Contents
Acknowledgements 5 摘要 7 Abstract 9 List of Figures 11 List of Tables 13 List of Equations 15 CHAPTER 1. INTRODUCTION 19 1.1 Objective 19 1.2 Background knowledge 19 1.2.1 Personal Ontology 19 1.2.2 Predictive Keyboards 21 CHAPTER 2. RELATED WORK 23 CHPATER 3. PERSONAL ONTOLOGY 27 3.1 Ontology Modeling 27 3.1.1 Personal Ontology Model 28 3.2 Ontology Construction 34 3.2.1 Information Retrieval 34 3.2.2 Suffix Tree Construction 36 3.2.3 Ontology Formulation 42 3.2.4 Ontology Update 47 3.3 Ontology Evolution 48 3.3.1 Time Decay 49 3.3.2 Inverse Document Frequency 53 3.4 Ontology Application 53 3.4.1 Applying Personal Ontology to a Software Keyboard 53 3.4.2 Definition of Keyboard Relevancy 54 3.4.3 User Query Examples 58 CHAPTER 4. SYSTEM DESIGN & IMPLEMENTATION 63 4.1 System Architecture 63 4.2 System Requirements 64 4.3 Class Designs 66 4.3.1 Overall System 66 4.3.2 Personal Corpus Submodule 69 4.3.3 Suffix Tree Submodule 73 4.4 System Verification 76 CHAPTER 5. PERFORMANCE EVALUATION 77 CHAPTER 6. CONCLUSION 79 6.1 Main Contributions 79 6.2 Future Works 80 REFERENCES 81 APPENDIX 85 A1 Personal Ontology System Architecture 85 A2 Functional Requirements 86 A3 Personal Ontology Interface Requirements 93 A3.1 Internal Interface 93 A3.2 External Interface 94 | |
dc.language.iso | en | |
dc.title | 結合頻率和相似度之個人本體論 | zh_TW |
dc.title | Personal Ontology: Infusion of Frequency and Similarity | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許永真(Jane Yung-jen Hsu),郭大維(Tei-Wei Kuo),吳家麟(Ja-Ling Wu),鄭有進(Yu Chin Cheng),劉立頌(Alan Liu) | |
dc.subject.keyword | 個人化,本體論,相似度,頻率,塑模,建構,演化,預測,軟體鍵盤, | zh_TW |
dc.subject.keyword | personal,ontology,similarity,frequency,query,modeling,construction, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。