請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51557完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑤明 | |
| dc.contributor.author | Cheng-Fang Wu | en |
| dc.contributor.author | 吳政芳 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:38:47Z | - |
| dc.date.available | 2016-02-16 | |
| dc.date.copyright | 2016-02-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-21 | |
| dc.identifier.citation | [1] Gerasimov Y. F., Chogolev G. T., and Maydanik Y. F., “Heat Pipe,” USSR Inventor's Certificate #449213, 1974.
[2] Maydanik Y. F., Vershinin S. V., Kholodov V. F., and Dolgrev Y. E., “Heat Transfer Apparatus,” U.S. Patent 4515209, 1984. [3] Maydanik Y. F., Fershtater Y. G., and V. G. Pastukhov, “Loop Heat Pipes: Development, Investigation and Elements of Engineering Calculations,” Ural Division of the USSR Academy of Sciences, 1989. [4] Gernert, N. J., Baldassarre, G. J., & Gottschlich, J. M., “Fine pore loop heat pipe wick structure development,” SAE Technical Paper, 1996. [5] Ku, J., “Operating characteristics of loop heat pipes,” SAE Technical Paper, 1999. [6] Kaya, T., & Ku, J., “A parametric study of performance characteristics of loop heat pipes,” SAE Technical Paper, 1999. [7] Hoang, T. T., O’Connell, T. A., Ku, J., Butler, C. D., & Swanson, T. D., ”Miniature loop heat pipes for electronic cooling,” ASME 2003 International Electronic Packaging Technical Conference and Exhibition. American Society of Mechanical Engineers., 2003. [8] Maydanik, Y. F., ”Loop heat pipes,” Applied Thermal Engineering, 25(5), 635-657, 2005. [9] Launay, S., & Vallée, M.,”State-of-the-art experimental studies on loop heat pipes,” Frontiers in Heat Pipes (FHP), 2(1), 2011. [10] Kobayashi, T., Ogushi, T., Haga, S., Ozaki, E., & Fujii, M., “Heat transfer performance of a flexible looped heat pipe using R134a as a working fluid: proposal for a method to predict the maximum heat transfer rate of FLHP,” Heat Transfer—Asian Research, 32(4), 306-318, 2003. [11] Ogushi, T., Yao, A., Xu, J. J., Masumoto, H., & Kawaji, M., “Heat transport characteristics of flexible looped heat pipe under micro‐gravity condition,” Heat Transfer—Asian Research, 32(5), 381-390, 2003. [12] Boo, J. H., & Chung, W. B., “Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick,” Journal of mechanical science and technology, 19(4), 1052-1061, 2005. [13] Riehl, R. R., & Siqueira, T. C., “Evaluating loop heat pipes performances regarding their geometric characteristics,” SAE Technical Paper, 2005. [14] Riehl, R. R., & Siqueira, T. C., “Heat transport capability and compensation chamber influence in loop heat pipes performance,” Applied Thermal Engineering, 26(11), 1158-1168, 2006. [15] Adoni, A. A., Ambirajan, A., Jasvanth, V. S., Kumar, D., & Dutta, P., “Effects of mass of charge on loop heat pipe operational characteristics,” Journal of Thermophysics and Heat Transfer, 23(2), 346-355, 2009. [16] Nagano, H., Fukuyoshi, F., Ogawa, H., & Nagai, H., “Development of an experimental small loop heat pipe with polytetrafluoroethylene wicks,” Journal of Thermophysics and Heat Transfer, 25(4), 547-552, 2011. [17] Nagano, H., & Nishigawara, M., “Small loop heat pipe with plastic wick for electronics cooling,” Japanese Journal of Applied Physics, 50(11S), 11RF02, 2011. [18] Nagano, H., Onogawa, E., Fukuyoshi, F., Ogawa, H., & Nagai, H., “Effect of amount of fluid charge in thermal performance of loop heat pipe,” Heat Transfer—Asian Research, 39(6), 355-364, 2010. [19] Nishikawara, M., and Nagano H., “Heat Transfer of LHP Evaporators with Micro Gaps,” 2013. [20] Nishikawara, M., Nagano, H., & Kaya, T., “Transient thermo-fluid modeling of loop heat pipes and experimental validation,” Journal of Thermophysics and Heat Transfer, 27(4), 641-647, 2013. [21] Mitomi, M., & Nagano, H., “ Long-distance loop heat pipe for effective utilization of energy,” International Journal of Heat and Mass Transfer, 77, 777-784, 2014. [22] Nishikawara, M., Nagano, H., Mottet, L., & Prat, M., “Numerical Study of Thermal Performance of a Capillary Evaporator in a Loop Heat Pipe with Liquid-Saturated Wick,” Journal of Electronics Cooling and Thermal Control, 4(04), 118, 2014. [23] Nishikawara, M., & Nagano, H., “Parametric experiments on a miniature loop heat pipe with PTFE wicks,” International Journal of Thermal Sciences, 85, 29-39, 2014. [24] Okutani, S., Nagano, H., Okazaki, S., Ogawa, H., & Nagai, H., “Operating Characteristics of Multiple Evaporators and Multiple Condensers Loop Heat Pipe with Polytetrafluoroethylene Wicks,” Journal of Electronics Cooling and Thermal Control, 2014. [25] Brandrup, J., Immergut, E. H., Abe, A., & Bloch, D. R. (Eds.)., “Polymer handbook,” New York: Wiley, 1999. [26] Douglas, D., Ku, J., & Kaya, T., “Testing of the Geoscience Laser Altimeter System (GLAS) prototype loop heat pipe,” AIAA Paper, 1999. [27] Prasher, R., and Payne, D., “Loop Heat Pipe for Mobile Computers,” U.S. Patent, No. 6381135, 2002. [28] Dunbar, N. W., “ATLID Laser Head Thermal Control-Design and Development of a Two-Phase Heat Transport System for Practical Application,” SAE Technical Paper, 1996. [29] Pastukhov, V. G., & Maydanik, Y. F., “Low-noise cooling system for PC on the base of loop heat pipes,” Applied Thermal Engineering, 27(5), 894-901, 2007. [30] Birur, G. C., Johnson, K. R., Novak, K. S., & Sur, T. W., “Thermal control of mars lander and rover batteries and electronics using loop heat pipe and phase change material thermal storage technologies,” SAE Technical Paper, 2000. [31] Maidanik, Y. F., Fershtater, Y. G., & Solodovnik, N. N., “Loop heat pipes: design, investigation, prospects of use in aerospace technics,” SAE Technical Paper, 1994. [32] Nishikawara, M., Nagano, H., & Kaya, T., “Transient thermo-fluid modeling of loop heat pipes and experimental validation,” Journal of Thermophysics and Heat Transfer, 27(4), 641-647, 2013. [33] Launay, S., Sartre, V., & Bonjour, J., “Parametric analysis of loop heat pipe operation: a literature review,” International Journal of Thermal Sciences, 46(7), 621-636, 2007. [34] Chuang, P.-Y.A., “An Improved Steady-State Model of Loop Heat Pipes Based on Experimental and Theoretical Analyses, Ph.D. Thesis, The Pennsylvania State University, USA, 2003. [35] Faghri, A., “Heat Pipe Science and Technology,” Taylor & Francis, Washington, DC., 1995. [36] Holman, J. P., “Heat Transfer,” 8th Edition, McGraw-Hill, New York, 2000. [37] Wang, Z., “On the Steady-State Operation of Loop Heat Pipe Evaporators: Fundamentals and Modeling,” Ph.D. Thesis, Clemson University, USA, 2005. [38] Gorring, R. L., and Churchill, S. W., “Thermal Conductivity of Heterogeneous Materials,” Chemical Engineering Progress, Vol. 57, pp.53-59, 1961. [39] “Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use,” Annual Book of ASTM Standards, Vol.14.04, July, 2005. [40] Tracey, V. A., “Pressing and Sintering of Nickel Powders,” The International Journal of Powder Metallurgy & Powder Technology, Vol. 20, No. 4, pp. 281 -285, 1984. [41] “Test Method for Density, Oil Content, and Interconnected Porosity of Sintered Metal Structural Parts and Oil-Impregnated Bearings,” Annual Book of ASTM Standards, Vol.02.05, May, 2005. [42] North, M. T., Sarraf, D. B., Rosenfeld, J. H., Maidanik, Y. F., and Vershinin, S., “High Heat Flux Loop Heat Pipes,” Sixth European Symposium on Space Environmental Control Systems, Noordwijk, Netherlands, May 20-22, 1997. [43] Siedel, B., Sartre, V., & Lefèvre, F., “Literature review: Steady-state modelling of loop heat pipes,” Applied Thermal Engineering, 75, 709-723, 2015. [44] Okita, K., Toyooka, S., Asako, S., Yamada, K., Apparatus for manufacturing porous polytetrafluoroethylene material, U. S. Patent No. 4,671,754, 1987. [45] Moffat, R. J., “Describing the uncertainties in experimental results,” Experimental thermal and fluid science, 1(1), 3-17, 1988. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51557 | - |
| dc.description.abstract | 迴路式熱管(Loop Heat Pipe)為一被動之二相熱傳元件,相較於傳統之散熱元件其具有下列優點:高熱傳量、長距離傳輸以及低熱阻等,對於未來之電子元件散熱需求有相當大的發展潛力。迴路式熱管內最重要之原件為蒸發器內部的毛細結構,其主要用來吸收液態工質並提供迴路式熱管足夠之毛細力,在傳統迴路式熱管中常見的毛細結構材質多屬於金屬,如:銅、鎳等。高分子毛細結構較少為被研究,但近年來持續有國外研究團隊不斷對聚四氟乙烯(鐵氟龍)毛細結構做研究,不過其熱傳性能皆有所限制。因此本研究擬採用不同於文獻毛細結構之製作方式來突破其熱傳限制,並透過電子式掃描顯微鏡(SEM)與水銀測孔儀分析其內部孔徑結構。
本研究透過燒結法製作鐵氟龍毛細結構,於水銀測孔量測結果中發現到,燒結之毛細結構內部存在類似於雙孔徑之孔徑分佈,有別於單孔徑之鐵氟龍孔洞材毛細結構,並且其內部大孔徑之孔洞分佈對於迴路式熱管熱傳性能擁有正相關之影響。在熱傳性能測試結果上較文獻而言,最大熱傳量較文獻的 40~70 W 約有 3~5倍左右的提升,最大熱通量上則較文獻的 4 W/cm2 增加約 2.5 倍,在系統總熱阻上也較文獻之 0.9 ℃/W 來得低。 在實驗結果上,同樣以燒結法製作之金屬鎳毛細結構於同一迴路式熱管測試系統中進行熱傳性能測試,以氨做為工作流體時,鐵氟龍毛細結構之熱傳測試結果與金屬鎳毛結構不相上下,兩者之最大熱傳量皆可達 600 W;系統總熱阻上鐵氟龍約 0.141 ℃/W 較金屬鎳毛細結構 0.171 ℃/W 約少了 20 %。在孔徑分析上,由電子式掃描顯微鏡及孔徑曲線上可以看到兩者孔洞結構之差異,金屬鎳毛細結構上屬於單一孔徑之孔洞結構,有別於鐵氟龍類似雙孔徑之分佈結果。 總結本研究之成果,透過燒結法所製作之鐵氟龍毛細結構由於其內部特殊之孔徑分佈情形,使得高分子毛細結構之迴路式熱管性顯著提升,並且與金屬鎳毛細結構不相上下;另一方面由於鐵氟龍於製程上較安全且有良好之加工性及保存穩定性等優點,因此對於高性能迴路式熱管之研究具有相當之優勢。 | zh_TW |
| dc.description.abstract | Loop heat pipe(LHP),which is a passive two phase thermal transport device, it has lots of advantages as following: high heat capacity, long transport distance and low thermal resistance, comparing to traditional thermal transport devices. It has great development potential for electronic cooling in the future. However, in the LHPs, there is an important unit in the evaporator, wick structure, which must supply enough capillary force and absorb liquid working fluid. Currently, most wick structures of LHPs are manufactured by metal material, such as nickel or copper. On the other hand, the polymer wicks have been kept researching by some group recently but there heat performances still have limitations. Therefore, this study uses other manufacture differ from papers to make polytetrafluoroethene (PTFE) wick and try to break this performance limitations. Further to analyze the wick’s porous structure by using scanning electron microscope (SEM) and mercury porosimeter.
In this study, the main objective is to use PTFE as wick material and to manufacture the polymer wick by sintering. From the porous distribution results by mercury porosimeter, the porous distribution of sintering PTFE wick is similar to bi-porous distribution that is different from the mono-porous PTFE wick which made by porous PTFE material. However, the larger porous distribution has positive correction with LHP’s heat transfer performance. On LHP performance test, comparing with paper’s results, the critical heat load is 3~5 times larger than 40~70 W, the maximum heat flux also increase 2.5 times than 4 W/cm2, and the total thermal resistance is less than 0.9℃/W from references presented. On the other hand, the LHP system install with PTFE and nickel wick which both manufactured by sintering and use ammonia as working fluid. Comparing with the test result, it shows that the critical heat load about PTFE and nickel wick both can reach 600 W and the total thermal resistance with PTFE wick is about 0.141 ℃/W that is less 20 % about nickel wick’s 0.171 ℃/W. Otherwise, the wick’s micro-structures are different from PTFE and nickel wick. From SEM and porous distribution, even using the same mono-porous sintering manufacture process, nickel and PTFE wick have different porous distribution. The porous distribution of nickel wick is mono-porous but PTFE is similar to bi-porous. In all, the PTFE wick which manufactured by sintering has particular porous distribution that differ from mono-porous wick. However, the similar bi-porous distribution is benefit to improve the performance of the LHP with PTFE wick and that is as good as nickel wick. Compared with nickel wick, the PTFE wick has more advantages including safely manufacture process, excellent machinability and persistence. So that, the PTFE wick has great development potential on high performance’s LHP. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:38:47Z (GMT). No. of bitstreams: 1 ntu-104-R02522102-1.pdf: 4209417 bytes, checksum: 136c0e6510218663750c38093458698d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xiii 符號說明 xv 第一章 緒論 1 1-1 前言 1 1-1.1 熱管 1 1-1.2 毛細泵吸環路 2 1-1.3 迴路式熱管 3 1-2 文獻回顧 6 1-2.1 迴路式熱管文獻回顧 6 1-2.2 高分子毛細結構應用於迴路式熱管 7 1-3 研究目的 11 第二章 迴路式熱管操作原理與理論分析 13 2-1 迴路式熱管基本原理 13 2-2 迴路式熱管操作限制 15 2-2.1 毛細限制 15 2-2.2 啟動限制 16 2-2.3 液體過冷限制 16 2-3 工質填充量與補償室尺寸 17 2-3.1 工質填充量 17 2-3.2 補償室尺寸 17 2-4 迴路式熱管熱阻分析 18 2-4.1 蒸發器熱阻 18 2-4.2 蒸氣段熱阻 19 2-4.3 冷凝器熱阻 19 2-5 熱洩漏量之分析 20 第三章 實驗設備與方法 25 3-1 實驗材料 25 3.2 實驗設備 26 3-2.1 毛細結構製作設備 26 3-2.2 毛細結構參數量測設備 27 3-2.3 迴路式熱管熱傳性能測試設備 28 3-3 鐵氟龍毛細結構之製程 30 3-3.1 鐵氟龍毛細結構製作方式之評比與選擇 30 3-3.2 鐵氟龍毛細結構製作步驟 32 3-4 毛細結構參數量測方法 34 3-4.1 有效孔徑 34 3-4.2 孔隙度 35 3-4.3 滲透度 36 3-5 迴路式熱管測試步驟與性能評估 37 3-5.1 迴路式熱管安裝步驟 37 3-5.2 熱傳性能測試步驟 37 3-5.3 迴路式熱管熱傳性能評估 38 3-6 迴路式熱管系統參數 39 3-7 誤差分析 40 第四章 結果與討論 41 4-1 鐵氟龍毛細結構之最佳參數探討 41 4-1.1 毛細結構參數之分析 41 4-1.2 毛細結構厚度對迴路式熱管熱傳性能之影響 42 4-2 外國學者對鐵氟龍毛細結構之研究 45 4-2.1 迴路式熱管熱傳性能結果 45 4-2.2 鐵氟龍毛細結構分析 47 4-2.3 孔徑分布對熱傳性能之影響 51 4-3 鐵氟龍與金屬鎳毛細結構之比較 54 4-3.1 毛細結構參數比較 54 4-3.2 迴路式熱管熱傳性能測試結果 55 4-3.3 鐵氟龍與金屬鎳毛細結構孔洞分析 58 4-3.4 鐵氟龍毛細結構之優勢 62 第五章 結論與建議 65 5-1 結論 65 5-2 建議 67 參考文獻 68 附錄 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 孔徑分佈 | zh_TW |
| dc.subject | 高分子毛細結構 | zh_TW |
| dc.subject | 迴路式熱管 | zh_TW |
| dc.subject | 鐵氟龍 | zh_TW |
| dc.subject | Loop heat pipe | en |
| dc.subject | Polymer wick structure | en |
| dc.subject | Porous distribution | en |
| dc.subject | Polytetrafluoroethene (PTFE) | en |
| dc.title | 高性能鐵氟龍毛細結構應用於迴路式熱管之研究 | zh_TW |
| dc.title | The Study of the High Performance PTFE Wick structure Applied to Loop Heat Pipe | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉建志,吳聖俊 | |
| dc.subject.keyword | 高分子毛細結構,迴路式熱管,鐵氟龍,孔徑分佈, | zh_TW |
| dc.subject.keyword | Polymer wick structure,Loop heat pipe,Polytetrafluoroethene (PTFE),Porous distribution, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
