請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51548
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
dc.contributor.author | Li-Ying Huang | en |
dc.contributor.author | 黃麗霙 | zh_TW |
dc.date.accessioned | 2021-06-15T13:38:24Z | - |
dc.date.available | 2017-02-16 | |
dc.date.copyright | 2016-02-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2016-01-22 | |
dc.identifier.citation | Achilli, A., Cath, T.Y., Childress, A.E. 2010. Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science, 364(1–2), 233-241.
Achilli, A., Cath, T.Y., Marchand, E.A., Childress, A.E. 2009. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 239(1–3), 10-21. Adav, S., Lee, D.J., Lai, J.Y. 2007. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. Applied Microbiology and Biotechnology, 77(1), 175-182. Adav, S.S., Lee, D.J. 2008. Physiological characterization and interactions of isolates in phenol-degrading aerobic granules. Applied microbiology and biotechnology, 78(5), 899-905. Adav, S.S., Lee, D.J., Lai, J.Y. 2009a. Functional consortium from aerobic granules under high organic loading rates. Bioresource technology, 100(14), 3465-3470. Adav, S.S., Lee, D.J., Lai, J.Y. 2009b. Proteolytic activity in stored aerobic granular sludge and structural integrity. Bioresource technology, 100(1), 68-73. Adav, S.S., Lee, D.J., Show, K.Y., Tay, J.H. 2008. Aerobic granular sludge: Recent advances. Biotechnology Advances, 26(5), 411-423. Al Halbouni, D., Traber, J., Lyko, S., Wintgens, T., Melin, T., Tacke, D., Janot, A., Dott, W., Hollender, J. 2008. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena. Water Research, 42(6), 1475-1488. Alturki, A., McDonald, J., Khan, S.J., Hai, F.I., Price, W.E., Nghiem, L.D. 2012. Performance of a novel osmotic membrane bioreactor (OMBR) system: Flux stability and removal of trace organics. Bioresource Technology, 113(0), 201-206. Association, A.P.H. 1998. APHA. 1998. Standard methods for the examination of water and wastewater, 20. Bowden, K.S., Achilli, A., Childress, A.E. 2012. Organic ionic salt draw solutions for osmotic membrane bioreactors. Bioresource Technology, 122(0), 207-216. Bowden, L.I., Jarvis, A.P., Younger, P.L., Johnson, K.L. 2009. Phosphorus Removal from Waste Waters Using Basic Oxygen Steel Slag. Environmental Science & Technology, 43(7), 2476-2481. Buer, T., Cumin, J. 2010. MBR module design and operation. Desalination, 250(3), 1073-1077. Cath, T.Y., Childress, A.E., Elimelech, M. 2006. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2), 70-87. Cath, T.Y., Elimelech, M., McCutcheon, J.R., McGinnis, R.L., Achilli, A., Anastasio, D., Brady, A.R., Childress, A.E., Farr, I.V., Hancock, N.T., Lampi, J., Nghiem, L.D., Xie, M., Yip, N.Y. 2013. Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. Desalination, 312(0), 31-38. Chen, L., Gu, Y.S., Cao, C.Q., Zhang, J., Ng, J.W., Tang, C.Y. 2014. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Research, 50(0), 114-123. Chen, M.Y., Lee, D.J., Tay, J. 2006. Extracellular polymeric substances in fouling layer. Separation science and technology, 41(7), 1467-1474. Chen, M.Y., Lee, D.J., Tay, J.H. 2007. Distribution of extracellular polymeric substances in aerobic granules. Applied Microbiology and Biotechnology, 73(6), 1463-1469. Chen, Y.C., Lin, C.J., Chen, H.L., Fu, S.Y., Zhan, H.Y. 2009. Cultivation of biogranules in a continuous flow reactor at low dissolved oxygen. Water, Air, & Soil Pollution: Focus, 9(3-4), 213-221. Choi, H., Zhang, K., Dionysiou, D.D., Oerther, D.B., Sorial, G.A. 2006. Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors. Chemosphere, 63(10), 1699-1708. Cisse, L., Mrabet, T. 2004. World phosphate production: overview and prospects. Phosphorus Research Bulletin, 15(0), 21-25. Cordell, D., Drangert, J.O., White, S. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. Cornel, P., Schaum, C. 2009. Phosphorus recovery from wastewater: needs, technologies and costs. Cornelissen, E., Harmsen, D., Beerendonk, E., Qin, J., Oo, H., De Korte, K., Kappelhof, J. 2011. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater. Water Science & Technology, 63(8), 1557-1565. Cornelissen, E.R., Harmsen, D., de Korte, K.F., Ruiken, C.J., Qin, J.-J., Oo, H., Wessels, L.P. 2008. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 319(1–2), 158-168. De Bashan, L.E., Bashan, Y. 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water research, 38(19), 4222-4246. De Kreuk, M., Picioreanu, C., Hosseini, M., Xavier, J., Van Loosdrecht, M. 2007. Kinetic model of a granular sludge SBR: influences on nutrient removal. Biotechnology and bioengineering, 97(4), 801-815. Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., Rabaey, K., Meesschaert, B. 2015. Global phosphorus scarcity and full-scale P-recovery techniques: a review. Critical Reviews in Environmental Science and Technology, 45(4), 336-384. Diez, V., Ezquerra, D., Cabezas, J., García, A., Ramos, C. 2014. A modified method for evaluation of critical flux, fouling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions. Journal of Membrane Science, 453, 1-11. Dils, R., Leaf, S., Robinson, R., Sweet, N. 1999. PHOSPHORUS IN THE ENVIRONMENT–WHY SHOULD RECOVERY BE A POLICY ISSUE?, EEA. Ding, Y., Tian, Y., Li, Z., Liu, F., You, H. 2014. Characterization of organic membrane foulants in a forward osmosis membrane bioreactor treating anaerobic membrane bioreactor effluent. Bioresource Technology, 167(0), 137-143. Dong, Y., Wang, Z., Zhu, C., Wang, Q., Tang, J., Wu, Z. 2014. A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate. Journal of Membrane Science, 471(0), 192-200. Doyle, J.D., Parsons, S.A. 2002. Struvite formation, control and recovery. Water Research, 36(16), 3925-3940. Drews, A. 2010. Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1), 1-28. Driver, J., Lijmbach, D., Steen, I. 1999. Why recover phosphorus for recycling, and how? Environmental technology, 20(7), 651-662. Duan, L., Jiang, W., Song, Y., Xia, S., Hermanowicz, S.W. 2013. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor. Bioresource technology, 148, 436-442. Duan, L., Song, Y., Yu, H., Xia, S., Hermanowicz, S.W. 2014. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor. Bioresource technology, 163, 395-398. Duan, L., Tian, Z., Song, Y., Jiang, W., Tian, Y., Li, S. 2015. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products. Biofouling, 31(2), 181-191. Federation, W.E., Association, A.P.H. 2005. Standard methods for the examination of water and wastewater. Fr?lund, B., Palmgren, R., Keiding, K., Nielsen, P.H. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water research, 30(8), 1749-1758. Gao, D.W., Fu, Y., Tao, Y., Li, X.X., Xing, M., Gao, X.H., Ren, N.Q. 2011. Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen concentrations. Bioresource technology, 102(10), 5626-5633. Garcia Belinchón, C., Rieck, T., Bouchy, L., Galí, A., Rougé, P., Fàbregas, C. 2013. Struvite recovery: pilot-scale results and economic assessment of different scenarios. Water Practice and Technology, 8, 119-130. Gaudy, A. 1962. Colorimetric determination of protein and carbohydrate. Ind. Water Wastes, 7(1), 17-27. Gunther, F. 2005. A solution to the heap problem: the doubly balanced agriculture: integration with population. Hu, J., Ren, H., Xu, K., Geng, J., Ding, L., Yan, X., Li, K. 2012. Effect of carriers on sludge characteristics and mitigation of membrane fouling in attached-growth membrane bioreactor. Bioresource technology, 122, 35-41. Iversen, V., Mehrez, R., Horng, R., Chen, C., Meng, F., Drews, A., Lesjean, B., Ernst, M., Jekel, M., Kraume, M. 2009. Fouling mitigation through flocculants and adsorbents addition in membrane bioreactors: comparing lab and pilot studies. Journal of Membrane Science, 345(1), 21-30. Juang, Y.C., Adav, S.S., Lee, D.J., Lai, J.Y. 2010. Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane bioreactors. Environmental science & technology, 44(4), 1267-1273. Kang, I.J., Yoon, S.H., Lee, C.H. 2002. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water research, 36(7), 1803-1813. Karl, D.M. 2000. Aquatic ecology: Phosphorus, the staff of life. Nature, 406(6791), 31-33. Kibalczyc, W. 1989. Study of calcium phosphate precipitation at 37 C. Crystal research and technology, 24(8), 773-778. Klaysom, C., Cath, T.Y., Depuydt, T., Vankelecom, I.F.J. 2013. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 42(16), 6959-6989. Krzeminski, P. 2013. Activated sludge filterability and full-scale membrane bioreactor operation. TU Delft, Delft University of Technology. Lay, W.C.L., Zhang, J., Tang, C., Wang, R., Liu, Y., Fane, A.G. 2012. Factors affecting flux performance of forward osmosis systems. Journal of Membrane Science, 394–395(0), 151-168. Lay, W.C.L., Zhang, Q., Zhang, J., McDougald, D., Tang, C., Wang, R., Liu, Y., Fane, A.G. 2011. Study of integration of forward osmosis and biological process: Membrane performance under elevated salt environment. Desalination, 283(0), 123-130. Le Clech, P., Chen, V., Fane, T.A. 2006. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1), 17-53. Le Clech, P., Jefferson, B., Chang, I.S., Judd, S.J. 2003. Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of Membrane Science, 227(1), 81-93. Lettinga, G., Van Velsen, A., Hobma, S.W., De Zeeuw, W., Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and bioengineering, 22(4), 699-734. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., Chen, J., Gao, W. 2014. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110-125. Lin, Y.M., Liu, Y., Tay, J.H. 2003. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Applied Microbiology and Biotechnology, 62(4), 430-435. Liu, X.-W., Sheng, G.-P., Yu, H.-Q. 2009. Physicochemical characteristics of microbial granules. Biotechnology advances, 27(6), 1061-1070. Liu, Y., Liu, Q.S. 2006. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 24(1), 115-127. Liu, Y., Tay, J.H. 2002. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 36(7), 1653-1665. Liu, Y., Tay, J.H. 2004. State of the art of biogranulation technology for wastewater treatment. Biotechnology advances, 22(7), 533-563. Liu, Y.Q., Tay, J.H. 2007. Characteristics and stability of aerobic granules cultivated with different starvation time. Applied microbiology and biotechnology, 75(1), 205-210. Loeb, S., Titelman, L., Korngold, E., Freiman, J. 1997. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. Journal of Membrane Science, 129(2), 243-249. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J biol chem, 193(1), 265-275. Lu, X., Boo, C., Ma, J., Elimelech, M. 2014. Bidirectional Diffusion of Ammonium and Sodium Cations in Forward Osmosis: Role of Membrane Active Layer Surface Chemistry and Charge. Environmental Science & Technology, 48(24), 14369-14376. Luo, W., Hai, F.I., Price, W.E., Nghiem, L.D. 2015. Water extraction from mixed liquor of an aerobic bioreactor by forward osmosis: Membrane fouling and biomass characteristics assessment. Separation and Purification Technology, 145(0), 56-62. Maximova, N., Dahl, O. 2006. Environmental implications of aggregation phenomena: current understanding. Current opinion in colloid & interface science, 11(4), 246-266. McCutcheon, J.R., McGinnis, R.L., Elimelech, M. 2005. A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination, 174(1), 1-11. Meesschaert, B., Desmidt, E., Dick, J., Verstraete, W. 2007. Ureolytic phophate precipitation from wastewater. Conference on Wastewater Reclamation and Reuse for Sustainability. pp. 72-77. Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., Yang, F. 2009. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water research, 43(6), 1489-1512. Meng, F., Zhang, H., Yang, F., Liu, L. 2007. Characterization of cake layer in submerged membrane bioreactor. Environmental science & technology, 41(11), 4065-4070. Mi, B., Elimelech, M. 2010. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 348(1–2), 337-345. Mishima, K., Nakamura, M. 1991. Self-immobilization of aerobic activated sludge—a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Science & Technology, 23(4-6), 981-990. Miura, Y., Watanabe, Y., Okabe, S. 2007. Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: impact of biofilm formation. Environmental science & technology, 41(2), 632-638. Montastruc, L., Azzaro Pantel, C., Biscans, B., Cabassud, M., Domenech, S. 2003. A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94(1), 41-50. Morgenroth, E., Sherden, T., Van Loosdrecht, M., Heijnen, J., Wilderer, P. 1997. Aerobic granular sludge in a sequencing batch reactor. Water research, 31(12), 3191-3194. Morse, G.K., Brett, S.W., Guy, J.A., Lester, J.N. 1998. Review: Phosphorus removal and recovery technologies. Science of The Total Environment, 212(1), 69-81. Moy, B.P., Tay, J.H., Toh, S.K., Liu, Y., Tay, S.L. 2002. High organic loading influences the physical characteristics of aerobic sludge granules. Letters in Applied Microbiology, 34(6), 407-412. Mulder, M. 1996. Basic principles of membrane technology. Springer Science & Business Media. Nawaz, M.S., Gadelha, G., Khan, S.J., Hankins, N. 2013. Microbial toxicity effects of reverse transported draw solute in the forward osmosis membrane bioreactor (FO-MBR). Journal of Membrane Science, 429(0), 323-329. Nguyen, L.N., Hai, F.I., Kang, J., Nghiem, L.D., Price, W.E., Guo, W., Ngo, H.H., Tung, K.-L. 2013. Comparison between sequential and simultaneous application of activated carbon with membrane bioreactor for trace organic contaminant removal. Bioresource technology, 130, 412-417. Ni, B.J., Xie, W.M., Liu, S.G., Yu, H.Q., Wang, Y.Z., Wang, G., Dai, X.L. 2009. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water research, 43(3), 751-761. Ognier, S., Wisniewski, C., Grasmick, A. 2002. Characterisation and modelling of fouling in membrane bioreactors. Desalination, 146(1), 141-147. Parsons, S.A., Smith, J.A. 2008. Phosphorus removal and recovery from municipal wastewaters. Elements, 4(2), 109-112. Piasecka, A., Souffreau, C., Vandepitte, K., Vanysacker, L., Bilad, R.M., De Bie, T., Hellemans, B., De Meester, L., Yan, X., Declerck, P. 2012. Analysis of the microbial community structure in a membrane bioreactor during initial stages of filtration. Biofouling, 28(2), 225-238. Qin, J., Kekre, K., Oo, M., Tao, G., Lay, C., Lew, C., Cornelissen, E., Ruiken, C. 2010. Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling. Qin, J.J., Oo, M.H., Tao, G., Cornelissen, E., Ruiken, C., de Korte, K., Wessels, L., Kekre, K.A. 2009. Optimization of operating conditions in forward osmosis for osmotic membrane bioreactor. Open Chemical Engineering Journal, 3, 27-32. Qin, L., Tay, J.H., Liu, Y. 2004. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry, 39(5), 579-584. Qiu, G., Law, Y.M., Das, S., Ting, Y.P. 2015. Direct and Complete Phosphorus Recovery from Municipal Wastewater Using a Hybrid Microfiltration-Forward Osmosis Membrane Bioreactor Process with Seawater Brine as Draw Solution. Environmental Science & Technology, 49(10), 6156-6163. Qiu, G., Ting, Y.P. 2014a. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresource Technology, 170(0), 221-229. Qiu, G., Ting, Y.P. 2013. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics. Bioresource Technology, 150(0), 287-297. Qiu, G., Ting, Y.P. 2014b. Short-term fouling propensity and flux behavior in an osmotic membrane bioreactor for wastewater treatment. Desalination, 332(1), 91-99. Rawn, A.M., Perry Banta, A., and Pomeroy, R. 1937. Multiple-stage sewage sludge digestion. American Society of Civil Engineers, 2116, 40. Ribeiro, D., Agnelli, J., Morelli, M. 2013. Study of mechanical properties and durability of magnesium phosphate cement matrix containing grinding dust. Materials Research, 16(5), 1113-1121. Rodríguez-Hernández, L., Esteban-García, A., Tejero, I. 2014. Comparison between a fixed bed hybrid membrane bioreactor and a conventional membrane bioreactor for municipal wastewater treatment: A pilot-scale study. Bioresource technology, 152, 212-219. S?rensen, B.L., Dall, O.L., Habib, K. 2015. Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Management(0). Shaffer, D.L., Werber, J.R., Jaramillo, H., Lin, S., Elimelech, M. 2015. Forward osmosis: Where are we now? Desalination, 356(0), 271-284. Smith CV, D.G.D., Talcott RM. 1969. The use of ultrafiltration membranes for activated sludge separation. Proceedings of the 24th Annual Purdue Industrial Waste Conference. Song, Y., Hahn, H., Hoffmann, E. 2002. The effect of carbonate on the precipitation of calcium phosphate. Environmental technology, 23(2), 207-215. Steen, I. 1998. Phosphorus availability in the 21st Century: management of a nonrenewable resource. Phosphorus and Potassium, 217, 7. Tang, M.K.Y., Ng, H.Y. 2014. Impacts of different draw solutions on a novel anaerobic forward osmosis membrane bioreactor (AnFOMBR). Tay, J.H., Liu, Q.S., Liu, Y. 2001. The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, 57(1-2), 227-233. Tay, J.H., Liu, Y., Tay, S.T.L., Hung, Y.T. 2009. Aerobic Granulation Technology. in: Advanced Biological Treatment Processes, Springer, pp. 109-128. Tay, J.H., Pan, S., He, Y., Tay, S.T.L. 2004. Effect of organic loading rate on aerobic granulation. I: Reactor performance. Journal of environmental engineering, 130(10), 1094-1101. Van den Broeck, R., Van Dierdonck, J., Nijskens, P., Dotremont, C., Krzeminski, P., Van der Graaf, J., Van Lier, J., Van Impe, J., Smets, I. 2012. The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR). Journal of Membrane Science, 401, 48-55. Wang, X., Chen, Y., Yuan, B., Li, X., Ren, Y. 2014a. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor. Bioresource technology, 161, 340-347. Wang, X., Yuan, B., Chen, Y., Li, X., Ren, Y. 2014b. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up. Bioresource technology, 167, 116-123. Wang, Z.W., Li, Y., Zhou, J.Q., Liu, Y. 2006a. The influence of short-term starvation on aerobic granules. Process biochemistry, 41(12), 2373-2378. Wang, Z.W., Liu, Y., Tay, J.H. 2006b. The role of SBR mixed liquor volume exchange ratio in aerobic granulation. Chemosphere, 62(5), 767-771. Westheimer, F.H. 1987. Why nature chose phosphates. Science, 235(4793), 1173-1178. Xiao, D., Tang, C.Y., Zhang, J., Lay, W.C.L., Wang, R., Fane, A.G. 2011. Modeling salt accumulation in osmotic membrane bioreactors: Implications for FO membrane selection and system operation. Journal of Membrane Science, 366(1–2), 314-324. Yamamoto, K., Hiasa, M., Mahmood, T., Matsuo, T. 1989. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Science & Technology, 21(4-5), 43-54. Yang, W., Cicek, N., Ilg, J. 2006. State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America. Journal of membrane science, 270(1), 201-211. Yap, W.J., Zhang, J., Lay, W.C.L., Cao, B., Fane, A.G., Liu, Y. 2012. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 122(0), 217-222. Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D., Elimelech, M. 2010. High Performance Thin-Film Composite Forward Osmosis Membrane. Environmental Science & Technology, 44(10), 3812-3818. Zhang, H., Ma, Y., Jiang, T., Zhang, G., Yang, F. 2012a. Influence of activated sludge properties on flux behavior in osmosis membrane bioreactor (OMBR). Journal of Membrane Science, 390–391(0), 270-276. Zhang, J., Loong, W.L.C., Chou, S., Tang, C., Wang, R., Fane, A.G. 2012b. Membrane biofouling and scaling in forward osmosis membrane bioreactor. Journal of Membrane Science, 403–404(0), 8-14. Zhang, K., Choi, H., Dionysiou, D.D., Sorial, G.A., Oerther, D.B. 2006. Identifying pioneer bacterial species responsible for biofouling membrane bioreactors. Environmental Microbiology, 8(3), 433-440. Zhang, Q., Jie, Y.W., Loong, W.L.C., Zhang, J., Fane, A.G., Kjelleberg, S., Rice, S.A., McDougald, D. 2014. Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR). Water Research, 58(0), 141-151. Zhang, Z., Wang, Y., Leslie, G.L., Waite, T.D. 2015. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water research, 69, 210-222. Zhu, H., Zhang, L., Wen, X., Huang, X. 2012. Feasibility of applying forward osmosis to the simultaneous thickening, digestion, and direct dewatering of waste activated sludge. Bioresource Technology, 113(0), 207-213. Zhu, H.T., Li, W.N. 2013. Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit. Frontiers of Environmental Science & Engineering, 7(2), 294-300. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51548 | - |
dc.description.abstract | 磷是無法再生也無可取代的珍貴資源,由於磷的使用量日益增加,地球正面臨磷礦耗竭和過多磷排入環境造成的水質優養化問題,因此越來越多研究投入磷回收方法設計。結晶沉降法以可同時去除水中的磷酸根和氨氮而富有前景,然而當廢水中養分濃度改變,回收利潤需隨操作成本變動而重新評估,本研究旨於提出一新式膜生物反應器以和既有反應器比較效益。具有優良沉降性、不易膨脹且能承受高有機負荷的好氧顆粒在本研究中用來取代絮狀活性污泥,模組件則採用正滲透TFC薄膜。75日操作過程中,前期(30日)反應器使用絮狀汙泥,後期(45日)使用好氧顆粒,每星期取出2.5公升上清液使用氫氧化鈉法以期反應生成含磷結晶,達到磷回收之目的。前期反應器之磷酸根、氨氮和總有機碳去除率分別為95.8%、 37.4% 和 100%;後期則為95.5%、 46.0% 和 100%。與直接從合成廢水回收磷之效益相比,前期可節省40.9%,後期則是45.0%鹼用量。由於實驗中觀察到溶質滲透現象,本研究同時測試了TFC薄膜的選擇性,結果顯示陽離子較可能通過TFC薄膜,其中又以單價(鋰、鈉)和原子序小(硼)的陽離子最容易滲透。 | zh_TW |
dc.description.abstract | Phosphorus recovery has been a global issue due to the depletion of phosphorus resource and the contamination of its release to the aquatic environment. Precipitation formation is a promising approach to recover phosphorus by extracting phosphate and ammonium ions in wastewaters; however, the operating costs need to be considered when the nitrogen and phosphorus loading increase. In this study, a modified process is suggested, using an aerobic granule forward osmosis membrane bioreactor (AG-FOMBR) to estimate the recovery efficiency. In this bioreactor, organic matters were digested by the biological process while phosphate ions were rejected by the Thin-film Composite (TFC) FO membrane and accumulated. Aerobic granules, as a compact form of microbial aggregates with good settleability and capability to treat high-strength wastewaters, were seeded to compare the membrane water fluxes with the sludge form. The AG-FOMBR showed 95.8%, 37.4%, and 100% overall removal of PO43--P, NH4+-N, and TOC in the first stage, and 95.5%, 46.0%, and 100% in the second stage, respectively. The solutes leakage of TFC membrane is measured and discussed. Recovery benefits through AG-FOMBR, OMBR, and FO (directly removing phosphorus from synthetic wastewater by FO) are evaluated. The global phosphorus recovery efficiency in this suggested reactor was 97.0% in average during the 75-day operation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:38:24Z (GMT). No. of bitstreams: 1 ntu-104-R02524061-1.pdf: 5395212 bytes, checksum: 344bcbdbdcc9ad1aa5971047a31ed516 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix ABBREVIATION LIST 1 Chapter 1 Introduction 3 Chapter 2 Literature Review 5 2.1 Phosphorus recovery 5 2.1.1 Current situation 5 2.1.2 Methods of phosphorus recovery 6 2.2 Membrane bioreactor 7 2.2.1 Development of MBR 7 2.2.2 Membrane fouling in MBR 8 2.3 Aerobic granule 10 2.3.1 Development of aerobic granules 10 2.3.2 Granulation and stability 11 2.4 Forward osmosis 13 2.4.1 Development of forward osmosis 13 2.4.2 Forward osmosis membrane bioreactor 14 Chapter 3 Materials and Methods 20 3.1 Experimental set up and operation 20 3.1.1 Operation strategy of the AG-FOMBR 20 3.1.2 Phosphorous recovery 23 3.1.3 TFC FO membrane test 24 3.2 Analytical methods 24 3.2.1 Mixed liquor suspended solid (MLSS) and volatile suspended solid (VSS) 24 3.2.2 Extracellular polymeric substance (EPS) 25 3.2.3 Granule staining and Confocal laser scanning microscopy (CLSM) imaging 26 3.2.4 Other determinations 27 Chapter 4 Results and Discussion 29 4.1 Characteristics of aerobic granule 29 4.1.1 Granulation and Performance of aerobic granules 29 4.1.2 EPS characterization 31 4.2 Forward osmosis MBR performance 32 4.2.1 Water flux and salinity in the bioreactor 32 4.2.2 Membrane fouling 36 4.2.3 Removal of organic matters 39 4.3 Phosphorous recovery 41 4.3.1 AG-FOMBR enrichment of phosphate 41 4.3.2 Phosphorous recovery efficiency 42 4.3.3 Recovered phosphorous solids 44 4.4 TFC FO membrane test 50 Chapter 5 Conclusions 53 REFERENCE 55 | |
dc.language.iso | en | |
dc.title | 以好氧顆粒正滲透膜生物反應器從污水處理回收磷程序評估 | zh_TW |
dc.title | Evaluation of Phosphorus Recovery from Wastewater via Aerobic Granule Forward Osmosis Membrane Bioreactor | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭智嘉,黃志彬,朱曉萍,Christopher Whiteley | |
dc.subject.keyword | 磷回收,好氧顆粒,正滲透,膜生物反應器,TFC薄膜, | zh_TW |
dc.subject.keyword | Phosphorus recovery,aerobic granule,forward osmosis,membrane bioreactor,Thin-film composite membrane, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。