請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51522完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 任立中(Lichung Ren) | |
| dc.contributor.author | Meng-Hsuan Wu | en |
| dc.contributor.author | 吳孟璇 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:37:23Z | - |
| dc.date.available | 2016-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-01-26 | |
| dc.identifier.citation | [1] Dichter, Ernest. 'How Word-of-mouth Advertising Words.' Harvard Business Review 44.6 (1966): 147-160.
[2] Weber Shandwick. Buy It, Try It, Rate It: Study of Consumer Electronics Purchase Decisions In the Engagement Era. N.p.: Weber Shandwick, 2012. PDF. [3] Davis, Alanah, and Deepak Khazanchi. 'An Empirical Study of Online Word of Mouth as a Predictor for Multi-product Category E-Commerce Sales.' Electronic Markets REMA Elec. Markets 18.2 (2008): 130-141. Web. [4] Dellarocas, Chrysanthos, Xiaoquan (Michael) Zhang, and Neveen F. Awad. 'Exploring the Value of Online Product Reviews in Forecasting Sales: The Case of Motion Pictures.' Journal of Interactive Marketing 21.4 (2007): 23-45. [5] Liu, Yong. 'Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue.' Journal of Marketing 70.3 (2006): 74-89. [6] Chevalier, Judith A., and Dina Mayzlin. 'The Effect of Word of Mouth on Sales: Online Book Reviews.' Journal of Marketing Research 43.3 (2006): 345-54. [7] Tan, Ah-Hwee. 'Text mining: The state of the art and the challenges.' Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases. Vol. 8. 1999. [8] Chiang, I-Ping, Yean-Fu Wen, Yu-Chun Luo, Ming-Chien Li, and Chiao-Ying Hsu. 'Using Text Mining Techniques to Analyze How Movie Forums Affect The Box Office.' International Journal of Electronic Commerce Studies Ijecs 5.1 (2014): 91-96. [9] Sethna, James. Statistical mechanics: entropy, order parameters, and complexity. Vol. 14. Oxford University Press, 2006. [10] Shannon, Claude E. 'A Mathematical Theory of Communication.' Bell System Technical Journal 27.3 (1948): 379-423. [11] Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python. Beijing: O'Reilly, 2009. [12] Miller, George A. WordNet: A Lexical Database for English. Communications of the ACM Vol. 38, No. 11: 39-41, 1995. Fellbaum, Christiane. WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press, 1998. [13] Princeton University. 'About WordNet.' WordNet. Princeton University, 2010. Web. Winter 2015. [14] 'IMDb's Statement on Their Rating Calculation.' IMDb.com, n.d. Web. Winter 2015. [15] Lee, Jonghyup, Jaehong Park, and Sunho Jung. 'The Impact of the Entropy of Review Text Sentiments on Movie Box Office Sales.' Thesis. Kyung Hee University, Seoul City, 2015. [16] Jamkhandikar, Shilpa. 'Post-release Marketing Helps 'Queen' Rule Box Office.' REUTERS. India Insight, 02 Apr. 2014. Web. Winter 2015. [17] 'Wordnets in the World.' The Global WordNet Association. N.p., n.d. Web. Winter 2015. [18] Jain, Dipak C., and Ram C. Rao. 'Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings.' Journal of Business & Economic Statistics 8.2 (1990): 163. [19] Duan, Wenjing, Bin Gu, and Andrew B. Whinston. 'The Dynamics of Online Word-of-mouth and Product Sales—An Empirical Investigation of the Movie Industry.' Journal of Retailing 84 (2008): 233-242. [20] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 'Latent Dirichlet Allocation.' The Journal of machine Learning research 3 (2003): 993-1022. [21] 'The Appraisal Website.' Appraisal Theory Homepage. N.p., n.d. Web. Winter 2015. [22] Whitelaw, Casey, Navendu Garg, and Shlomo Argamon. 'Using Appraisal Groups for Sentiment Analysis.' Proceedings of the 14th ACM International Conference on Information and Knowledge Management - CIKM '05 (2005): n. pag. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51522 | - |
| dc.description.abstract | 過去有不少研究旨在分析網路口碑之於電影票房的影響,常以口碑的數量和評價、及其他電影特徵資料作為票房預測模型之主要自變數。其中口碑數量多取自電影網站上之評論篇數,口碑評價則取電影網站於該電影之統計評分;少有研究探討口碑的文字內容與文本情感之於銷售績效的影響。這份研究旨在探討口碑文字的力量,透過文本挖掘與資料探勘方法,分析口碑的文字數量、文本情感、熵值與結構之於電影銷售績效的解釋能力。
此研究針對口碑文字之影響力以及傳統的口碑數量及評價之影響力進行比較分析,在不考慮其他電影變數的情況下,研究結果指出口碑之文字數量與文本情感不僅能夠取代,甚至超越了傳統的評論數量與統計評價之於電影票房的預測能力,其參數之顯著水準更高,模型之整體解釋能力也更強。 此外,研究發現口碑的文本情感熵值(字群亂度)之於電影票房有負向影響。具體而言,當特定的正面或負面字群比例減少、與其他特定正面或負面字群比例增加之共同作用下,將有助於電影銷售績效之提升。 | zh_TW |
| dc.description.abstract | A lot has been studied in the influences of WOM volume and valence on box office revenues by applying online review quantities and ratings. However, little is known about the force of the quantities and sentiments of words in WOM. This research is conducted to explore the force of words in WOM. With text mining and sentiment analysis techniques, the study is to examine the explanatory power of words to box office performances by word volumes, sentiment scores, and sentiment structures of words, including the entropy and the composition.
The study compares the effects of words and of the classical review volume and valence without involving other variables of the movies. The result indicates that the volume and valence of words can substitute, or even surpass, those of reviews by both higher significant level and stronger explanatory power. In addition, the study has found that the entropy of text sentiment (score clusters) has negative effects on box office performances. Specifically, the decrease in the ratios of certain negative or positive word clusters, along with the increase in the ratios of certain negative or positive word clusters, collaboratively generate a positive synergy on box office performances. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:37:23Z (GMT). No. of bitstreams: 1 ntu-105-R02724026-1.pdf: 621566 bytes, checksum: 19339c8e6ecaa6b65e106bd817246071 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES v LIST OF TABLES vi Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Text Mining 4 2.2 Entropy 5 Chapter 3 Data 7 3.1 Collection 7 3.2 Pre-processing 8 Chapter 4 Model 12 4.1 Construction 12 4.2 Estimation 28 Chapter 5 Conclusions 51 5.1 Theoretical Implications 51 5.2 Managerial Implications 52 5.3 Future Research 53 REFERENCES 55 | |
| dc.language.iso | en | |
| dc.subject | 資訊熵 | zh_TW |
| dc.subject | 文本挖掘 | zh_TW |
| dc.subject | 文本情感分析 | zh_TW |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | 票房預測 | zh_TW |
| dc.subject | 銷售績效預測 | zh_TW |
| dc.subject | 口碑 | zh_TW |
| dc.subject | Shannon Entropy | en |
| dc.subject | Text Mining | en |
| dc.subject | Sentiment Analysis | en |
| dc.subject | Opinion Mining | en |
| dc.subject | Data Mining | en |
| dc.subject | Box Office Forecast | en |
| dc.subject | Sales Forecast | en |
| dc.subject | WOM | en |
| dc.title | 網路口碑之文字數量、文本情感、熵值與結構於產品銷售績效之影響─以電影產業為例 | zh_TW |
| dc.title | The Impact of Word Volume, Text Sentiment, Sentiment Entropy and Structure in eWOM on Product Sales Performance – The Case of Motion Picture Industry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳厚銘,周建亨 | |
| dc.subject.keyword | 文本挖掘,文本情感分析,資料探勘,票房預測,銷售績效預測,口碑,資訊熵, | zh_TW |
| dc.subject.keyword | Text Mining,Sentiment Analysis,Opinion Mining,Data Mining,Box Office Forecast,Sales Forecast,WOM,Shannon Entropy, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-26 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 國際企業學研究所 | zh_TW |
| 顯示於系所單位: | 國際企業學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 607 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
