Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃銓珍(Chang-Jen Huang)
dc.contributor.authorShan Suen
dc.contributor.author蘇珊zh_TW
dc.date.accessioned2021-06-15T13:36:50Z-
dc.date.available2018-02-24
dc.date.copyright2016-02-24
dc.date.issued2016
dc.date.submitted2016-01-26
dc.identifier.citationReference
1. Ho, K., Nichols, C.G., Lederer, W.J., Lytton, J., Vassilev, P.M., Kanazirska, M.V. and Hebert, S.C. (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature, 362, 31-38.
2. Fallen, K., Banerjee, S., Sheehan, J., Addison, D., Lewis, L.M., Meiler, J. and Denton, J.S. (2009) The Kir channel immunoglobulin domain is essential for Kir1.1 (ROMK) thermodynamic stability, trafficking and gating. Channels (Austin), 3, 57-68.
3. Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I. and Kurachi, Y. (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev, 90, 291-366.
4. Enyedi, P. and Czirjak, G. (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev, 90, 559-605.
5. Yamashita, T., Horio, Y., Yamada, M., Takahashi, N., Kondo, C. and Kurachi, Y. (1996) Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. The Journal of physiology, 493 ( Pt 1), 143-156.
6. Lu, Z. and MacKinnon, R. (1994) Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature, 371, 243-246.
7. Stanfield, P.R., Davies, N.W., Shelton, P.A., Sutcliffe, M.J., Khan, I.A., Brammar, W.J. and Conley, E.C. (1994) A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. The Journal of physiology, 478 ( Pt 1), 1-6.
8. Boim, M.A., Ho, K., Shuck, M.E., Bienkowski, M.J., Block, J.H., Slightom, J.L., Yang, Y., Brenner, B.M. and Hebert, S.C. (1995) ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. The American journal of physiology, 268, F1132-1140.
9. Chepilko, S., Zhou, H., Sackin, H. and Palmer, L.G. (1995) Permeation and gating properties of a cloned renal K+ channel. The American journal of physiology, 268, C389-401.
10. Rapedius, M., Haider, S., Browne, K.F., Shang, L., Sansom, M.S., Baukrowitz, T. and Tucker, S.J. (2006) Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO reports, 7, 611-616.
11. Welling, P.A. and Ho, K. (2009) A comprehensive guide to the ROMK potassium channel_ form and function in health and disease. American journal of physiology. Renal physiology, 297, F849-863.
12. Pattnaik, B.R., Asuma, M.P., Spott, R. and Pillers, D.A. (2012), Molecular genetics and metabolism, Vol. 105, pp. 64-72.
13. Wagner, C.A. (2010) New roles for renal potassium channels. J Nephrol, 23, 5-8.
14. Wang, W.H. (2006) Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. American journal of physiology. Renal physiology, 290, F14-19.
15. Hebert, S.C., Desir, G., Giebisch, G. and Wang, W. (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev, 85, 319-371.
16. Favero, M., Calo, L.A., Schiavon, F. and Punzi, L. (2011) Miscellaneous non-inflammatory musculoskeletal conditions. Bartter's and Gitelman's diseases. Best practice & research. Clinical rheumatology, 25, 637-648.
17. Wright, P.A. and Wood, C.M. (2012) Seven things fish know about ammonia and we don't. Respiratory physiology & neurobiology, 184, 231-240.
27
18. Wang, Y.F., Tseng, Y.C., Yan, J.J., Hiroi, J. and Hwang, P.P. (2009) Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol, 296, R1650-1660.
19. Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.P. and Kaneko, T. (2008) Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. The Journal of experimental biology, 211, 2584-2599.
20. Hwang, P.P. and Lee, T.H. (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 148, 479-497.
21. Lin, L.Y., Horng, J.L., Kunkel, J.G. and Hwang, P.P. (2006) Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol, 290, C371-378.
22. Pan, T.C., Liao, B.K., Huang, C.J., Lin, L.Y. and Hwang, P.P. (2005) Epithelial Ca(2+) channel expression and Ca(2+) uptake in developing zebrafish. Am J Physiol Regul Integr Comp Physiol, 289, R1202-1211.
23. Abbas, L., Hajihashemi, S., Stead, L.F., Cooper, G.J., Ware, T.L., Munsey, T.S., Whitfield, T.T. and White, S.J. (2011) Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. The Journal of physiology, 589, 1489-1503.
24. Wingert, R.A., Selleck, R., Yu, J., Song, H.D., Chen, Z., Song, A., Zhou, Y., Thisse, B., Thisse, C., McMahon, A.P. et al. (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS genetics, 3, 1922-1938.
25. Kahloon, M.U., Aslam, A.K., Aslam, A.F., Wilbur, S.L., Vasavada, B.C. and Khan, I.A. (2005) Hyperkalemia induced failure of atrial and ventricular pacemaker capture. Int J Cardiol, 105, 224-226.
26. Cho, J.T. and Guay-Woodford, L.M. (2003) Heterozygous mutations of the gene for Kir 1.1 (ROMK) in antenatal Bartter syndrome presenting with transient hyperkalemia, evolving to a benign course. Journal of Korean medical science, 18, 65-68.
27. Furukawa, F., Watanabe, S., Kimura, S. and Kaneko, T. (2012) Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol, 302, R568-576.
28. Furukawa, F., Watanabe, S., Seale, A.P., Breves, J.P., Lerner, D.T., Grau, E.G. and Kaneko, T. (2015) In vivo and in vitro effects of high-K(+) stress on branchial expression of ROMKa in seawater-acclimated Mozambique tilapia. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 187, 111-118.
29. Furukawa, F., Watanabe, S., Kakumura, K., Hiroi, J. and Kaneko, T. (2014) Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. Am J Physiol Regul Integr Comp Physiol, 307, R1303-1312.
30. Yu, L., Liu, S., Chen, P. and Lin, L. (2015) K+ secretion by ionocytes in the skin of medaka larve. Faseb Journal, 29.
31. Chang, W.J. and Hwang, P.P. (2011) Development of zebrafish epidermis. Birth defects research. Part C, Embryo today : reviews, 93, 205-214.
28
32. Janicke, m., Carney, t.J. and Hammerschmidt, m. (2007) Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Developmental biology, 307, 258-271.
33. Hsiao, C.D., You, M.S., Guh, Y.J., Ma, M., Jiang, Y.J. and Hwang, P.P. (2007) A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PloS one, 2, e302.
34. Hwang, P.P. (2009) Ion uptake and acid secretion in zebrafish (Danio rerio). The Journal of experimental biology, 212, 1745-1752.
35. Hwang, P.P. and Chou, M.Y. (2013) Zebrafish as an animal model to study ion homeostasis. Pflugers Archiv : European journal of physiology, 465, 1233-1247.
36. Hwang, P.P., Lee, T.H. and Lin, L.Y. (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol, 301, R28-47.
37. Dymowska, A.K., Hwang, P.P. and Goss, G.G. (2012) Structure and function of ionocytes in the freshwater fish gill. Respiratory physiology & neurobiology, 184, 282-292.
38. Perry, S.F., Vulesevic, B., Grosell, M. and Bayaa, M. (2009) Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol, 297, R988-997.
39. Bayaa, M., Vulesevic, B., Esbaugh, A., Braun, M., Ekker, M.E., Grosell, M. and Perry, S.F. (2009) The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. The Journal of experimental biology, 212, 3283-3295.
40. Evans, D.H., Piermarini, P.M. and Choe, K.P. (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev, 85, 97-177.
41. Guh, Y.J., Lin, C.H. and Hwang, P.P. (2015) Osmoregulation in Zebrafish: Ion Transport Mechanisms and Functional Regulation. EXCLI journal, 14, 627-659.
42. Thier, S.O. (1986) Potassium physiology. The American journal of medicine, 80, 3-7.
43. Brodie, C., Bak, A., Shainberg, A. and Sampson, S.R. (1987) Role of Na-K ATPase in regulation of resting membrane potential of cultured rat skeletal myotubes. Journal of cellular physiology, 130, 191-198.
44. Marshall WS and M., G. (2006) Ion transport, osmoregulation, and acid-base balance. In: The Physiology of Fishes (3rd ed.), edited by Evans DH, Claiborne JB. . 177-230.
45. Jorgensen, P.L., Hakansson, K.O. and Karlish, S.J. (2003) Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annual review of physiology, 65, 817-849.
46. McDonough, A.A. and Farley, R.A. (1993) Regulation of Na,K-ATPase activity. Current opinion in nephrology and hypertension, 2, 725-734.
47. Jorgensen, P.L. and Andersen, J.P. (1988) Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. The Journal of membrane biology, 103, 95-120.
48. Takeyasu, K. and Kawakami, K. (1989) [Na+,K(+)-ATPase: genes, expression and membrane insertion]. Seikagaku. The Journal of Japanese Biochemical Society, 61, 394-401.
29
49. Fambrough, D.M. (1988) The sodium pump becomes a family. Trends in neurosciences, 11, 325-328.
50. Vagin, O., Dada, L.A., Tokhtaeva, E. and Sachs, G. (2012) The Na-K-ATPase alpha(1)beta(1) heterodimer as a cell adhesion molecule in epithelia. Am J Physiol Cell Physiol, 302, C1271-1281.
51. Paul, S.M., Palladino, M.J. and Beitel, G.J. (2007) A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development, 134, 147-155.
52. Garty, H. and Karlish, S.J. (2006) Role of FXYD proteins in ion transport. Annual review of physiology, 68, 431-459.
53. Minor, N.T., Sha, Q., Nichols, C.G. and Mercer, R.W. (1998) The gamma subunit of the Na,K-ATPase induces cation channel activity. Proceedings of the National Academy of Sciences of the United States of America, 95, 6521-6525.
54. Kravtsova, V.V., Matchkov, V.V., Bouzinova, E.V., Vasiliev, A.N., Razgovorova, I.A., Heiny, J.A. and Krivoi, II. (2015) Isoform-specific Na,K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. BioMed research international, 2015, 720172.
55. Canfield, V.A., Loppin, B., Thisse, B., Thisse, C., Postlethwait, J.H., Mohideen, M.A., Rajarao, S.J. and Levenson, R. (2002) Na,K-ATPase alpha and beta subunit genes exhibit unique expression patterns during zebrafish embryogenesis. Mechanisms of development, 116, 51-59.
56. Liao, B.K., Chen, R.D. and Hwang, P.P. (2009) Expression regulation of Na+-K+-ATPase alpha1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol Regul Integr Comp Physiol, 296, R1897-1906.
57. Dooley, K. and Zon, L.I. (2000) Zebrafish: a model system for the study of human disease. Current opinion in genetics & development, 10, 252-256.
58. Grunwald, D.J. and Eisen, J.S. (2002) Headwaters of the zebrafish -- emergence of a new model vertebrate. Nature reviews. Genetics, 3, 717-724.
59. Penberthy, W.T., Shafizadeh, E. and Lin, S. (2002) The zebrafish as a model for human disease. Frontiers in bioscience : a journal and virtual library, 7, d1439-1453.
60. Key, B. and Devine, C.A. (2003) Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods in cell science : an official journal of the Society for In Vitro Biology, 25, 1-6.
61. Chen, Y.C., Cheng, C.H., Chen, G.D., Hung, C.C., Yang, C.H., Hwang, S.P., Kawakami, K., Wu, B.K. and Huang, C.J. (2009) Recapitulation of zebrafish sncga expression pattern and labeling the habenular complex in transgenic zebrafish using green fluorescent protein reporter gene. Developmental dynamics : an official publication of the American Association of Anatomists, 238, 746-754.
62. Urtishak, K.A., Choob, M., Tian, X., Sternheim, N., Talbot, W.S., Wickstrom, E. and Farber, S.A. (2003) Targeted gene knockdown in zebrafish using negatively charged peptide nucleic acid mimics. Developmental dynamics : an official publication of the American Association of Anatomists, 228, 405-413.
63. Chu, C.Y., Cheng, C.H., Chen, G.D., Chen, Y.C., Hung, C.C., Huang, K.Y. and Huang, C.J. (2007) The zebrafish erythropoietin: functional identification and biochemical characterization. FEBS letters, 581, 4265-4271.
30
64. Bankir, L. and de Rouffignac, C. (1985) Urinary concentrating ability: insights from comparative anatomy. The American journal of physiology, 249, R643-666.
65. Beuchat, C.A. (1990) Metabolism and the scaling of urine concentrating ability in mammals: resolution of a paradox? Journal of theoretical biology, 143, 113-122.
66. Westerfield, M. (2007) THE ZEBRAFISH BOOK, 5th Edition; A guide for the laboratory use of zebrafish (Danio rerio), Eugene, .
67. Kwong, R.W., Kumai, Y. and Perry, S.F. (2014) The physiology of fish at low pH: the zebrafish as a model system. The Journal of experimental biology, 217, 651-662.
68. Hsu, H.H., Lin, L.Y., Tseng, Y.C., Horng, J.L. and Hwang, P.P. (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell and tissue research, 357, 225-243.
69. Kawakami, K. (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome biology, 8 Suppl 1, S7.
70. Kim, J.H., Lee, S.R., Li, L.H., Park, H.J., Park, J.H., Lee, K.Y., Kim, M.K., Shin, B.A. and Choi, S.Y. (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PloS one, 6, e18556.
71. Yan, J.J., Chou, M.Y., Kaneko, T. and Hwang, P.P. (2007) Gene expression of Na+/H+ exchanger in zebrafish H+ -ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol, 293, C1814-1823.
72. Chang, W.J., Wang, Y.F., Hu, H.J., Wang, J.H., Lee, T.H. and Hwang, P.P. (2013) Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio). Frontiers in zoology, 10, 46.
73. Shih, T.H., Horng, J.L., Liu, S.T., Hwang, P.P. and Lin, L.Y. (2012) Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol, 302, R84-93.
74. Elsalini, O.A. and Rohr, K.B. (2003) Phenylthiourea disrupts thyroid function in developing zebrafish. Development genes and evolution, 212, 593-598.
75. Serluca, F.C., Sidow, A., Mably, J.D. and Fishman, M.C. (2001) Partitioning of tissue expression accompanies multiple duplications of the Na+/K+ ATPase alpha subunit gene. Genome Res,2001,11,1625, 11, 1625-1631.
76. Esaki, M., Hoshijima, K., Nakamura, N., Munakata, K., Tanaka, M., Ookata, K., Asakawa, K., Kawakami, K., Wang, W., Weinberg, E.S. et al. (2009) Mechanism of development of ionocytes rich in vacuolar-type H(+)-ATPase in the skin of zebrafish larvae. Developmental biology, 329, 116-129.
77. Georges, A.B., Benayoun, B.A., Caburet, S. and Veitia, R.A. (2010) Generic binding sites, generic DNA-binding domains: where does specific promoter recognition come from? FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 24, 346-356.
78. Yoo, D., Flagg, T.P., Olsen, O., Raghuram, V., Foskett, J.K. and Welling, P.A. (2004) Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions. The Journal of biological chemistry, 279, 6863-6873.
31
79. Yoo, D., Kim, B.Y., Campo, C., Nance, L., King, A., Maouyo, D. and Welling, P.A. (2003) Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. The Journal of biological chemistry, 278, 23066-23075.
80. Ma, D., Zerangue, N., Lin, Y.F., Collins, A., Yu, M., Jan, Y.N. and Jan, L.Y. (2001) Role of ER export signals in controlling surface potassium channel numbers. Science, 291, 316-319.
81. Ichimura, K., Bubenshchikova, E., Powell, R., Fukuyo, Y., Nakamura, T., Tran, U., Oda, S., Tanaka, M., Wessely, O., Kurihara, H. et al. (2012) A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PloS one, 7, e45286.
82. Christou-Savina, S., Beales, P.L. and Osborn, D.P. (2015) Evaluation of zebrafish kidney function using a fluorescent clearance assay. Journal of visualized experiments : JoVE, e52540.
83. Drummond, I.A. and Davidson, A.J. (2010) Zebrafish kidney development. Methods in cell biology, 100, 233-260.
84. O'Connell, A.D., Leng, Q., Dong, K., MacGregor, G.G., Giebisch, G. and Hebert, S.C. (2005) Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK). Proceedings of the National Academy of Sciences of the United States of America, 102, 9954-9959.
85. Schachtman, D.P. (2015) The Role of Ethylene in Plant Responses to K(+) Deficiency. Frontiers in plant science, 6, 1153.
86. Wu, H.J., Fong, T.H., Chen, S.L., Wei, J.C., Wang, I.J., Wen, C.C., Chang, C.Y., Chen, X.G., Chen, W.Y., Chen, H.M. et al. (2015) Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment. J Appl Toxicol, 35, 287-294.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51508-
dc.description.abstract特定離子細胞在狹鹽性硬骨魚類取代了哺乳類腎臟在滲透壓、水份以及酸鹼值等等的調節功能。透過表現在細胞膜上的特定離子通道可以將斑馬魚離子細胞區分為富鈉鉀幫浦細胞, 鈉氯離子運輸蛋白細胞, 富氫幫浦細胞, SLC26細胞 以及泌鉀細胞,在功能上分別負責:鈣離子運輸、氯離子/HCO3運輸, 氯離子運輸, 氫離子/鈉離子運輸, 以及鉀離子運輸。過去的研究中,已經對前四種離子細胞的功能有一定的了解,然而,泌鉀細胞對於鉀離子的調節模式還是未知的。近來學者指出,斑馬魚帶有一個與哺乳類Kir1.1(ROMK)同源的蛋白,Kcnj1a.1。其表現無論在原前腎或是皮膚細胞都跟鈉鉀幫浦次單元異構物 atp1a1a.4都具有共位現象。現在,斑馬魚除了kcnj1a.1之外還預測及比對出另外五個重覆複製的基因,命名為Kcnj1a.2到Kcnj1a.6。由於序列的相似,且具有高度保守的內向整流鉀離子功能domain,本研究的目的即在定義Kcnj1a亞家族成員在斑馬魚的表現以及調控鉀離子的功能。透過全體雙螢光雜合實驗發現,只有kcnj1a.1在腎細胞有表現,且與atp1a1a.4有共位現象。另外五個基因的表現則廣泛分布在卵黃囊、軀幹及少部分頭等區域的皮膚細胞,並且跟atp1a1a.4有部分共位現象。由於kcnj1a.2,3以及4的mRNA表現訊號較明顯,我們選殖出這三個基因的全長並且在HEK293細胞中過量表現,經由電生理實驗發現只有Kcnj1a.2在調控鉀離子具有非電壓依賴性,且其反轉電流最接近於鉀離子通道。在檢測斑馬魚體內鉀離子含量的實驗中發現,降低飼養斑馬魚水體環境中的鉀含量,會降低其體內鉀含量。然而提高水中鉀的濃度,相對於對照組而言,高鉀水飼養的斑馬魚體內鉀含量並沒有顯著差異。利用MO 技術來降低Kcnj1a在斑馬魚發育過程蛋白質表現,發現受精後三天的斑馬魚體內鉀含量如同低鉀水飼養的情況類似都會降低。因此,由上述結果證實Kcnj1a在斑馬魚胚胎發育階段扮演著調控鉀離子進出的角色。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T13:36:50Z (GMT). No. of bitstreams: 1
ntu-105-D97b46011-1.pdf: 2210267 bytes, checksum: 3cad5d9be286855f5022c9f8cfc544ee (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContent…………………………………………………………………………………………… I
中文摘要…………………………………………………………………………………………III
Abstrate……………………………………………………………………………………………IV
Abbreviations…………………………………………………………………………………… VI
Introduction…………………………………………………………………………………………1
Kcnj1 family in mammals………………………………………………………………… 1
Kcnj1a genes and proteins in fishes……………………………………………………………2
Ionocytes……………………………………………………………………………………… 4
Na+-K+-ATPase plays an important role of osmoregulation in zebrafish development………4
Zebrafish as an experimental model for ionocytes development………………………………5
Specific aims…………………………………………………………………………………………8
Materials and methods………………………………………………………………………………9
Zebrafish care……………………………………………………………………………… 9
Generation of a transgenic zebrafish line carrying atp1a1a.4:GFP …………………………9
RNA Probes synthesis and whole-mount insitu hybridization of Kcnj1a family genes………10
Construction of expression plasmids…………………………………………………………10
Cell cultures……………………………………………………………………………………11
Transactivation assay…………………………………………………………………………12
Western blot and immunocytochemistry assay………………………………………………12
Electrophysiology………………………………………………………………………13
Acclimation experiments………………………………………………………………………13
Injection of specific Kcnj1a morpholino………………………………………………………14
Zebrafish embryos whole-body Potassium content detection…………………………………14
Whole-mount immunostaining……………………………………………………………… 14
Results…………………………………………………………………………………………… 15
Genomic organization of zebrafish Kcnj1a family……………………………………………15
Spatial and temporal expression pattern of six Kcnj1a genes at 3 dpf zebrafish embryo……15
II
Assessment the promoter activity of the zatp1a1a.4 in cultured cells and zatp1a1a.4 stable transgenic fish generation……………………………………………………………………16
Colocalization of endogenous kcnj1a.1~6 and gfp in Tg-(ATP1a1a.4: GFP) ………………17
Cellular localization of Kcnj1a.2, Kcnj1a.3 and Kcnj1a.4 in HEK293T cells……………………………………………………………………………………………18
Functional assay of potassium channels of zebrafish Kcnj1a.2, Kcnj1a.3 and Kcnj1a.4 by whole-cell patch clamp in vitro………………………………………………………………19
Whole body potassium content in various potassium contained environment in zebrafish…20
Kcnj1a loss-of-function results in decreased whole body potassium content…………………21
Discussion…………………………………………………………………………………………22
References…………………………………………………………………………………………26
Figures………………………………………………………………………………………………32
Fig. 1. Genomic organization of the zebrafish Kcnj1a genes and alignment of amino acid sequences of six zebrafish Kcnj1a genes………………………………………………………32
Fig. 2. Expressing patterns of zKcnj1a family mRNAs in zebrafish embryos at 72 hpf. …34
Fig. 3. Analysis the promoter activity of atp1a1a.4 in vitro and investigate the expression patterns of transient GFP driven by 5'upstream region of 1a1a.4 in vivo. …………………36
Fig. 4. The expressing pattern of green fluorescent protein in transgenic zebrafish Tg-(ATP1a1a.4:GFP) line. …………………………………………………………………37
Fig. 5. Double in situ hybridization of the genes of zKcnj1a family and GFP in Tg-(ATP1a1a.4:GFP) fish. …………………………………………………………………39
Fig. 6. Expression of Kcnj1a.2, Kcnj1a.3 and Kcnj1a.4 proteins in HEK-293T cells.. ………………………………………………………………………………41
Fig. 7. Expression and cellular localization of Kcnj1a.2, Kcnj1a.3 and Kcnj1a.4 proteins in HKE293T cells ………………………………………………………………………………42
Fig. 8.Whole-cell patch clamp of Kcnj1a.2, Kcn1a.3 and Kcnj1a.4 transient expressed HEK293 cells. ………………………………………………………………………………44
Fig. 9. Effect of whole body potassium content and phenotypes of zebrafish embryos by environment ion concentration changing and Kcnj1 morpholino knockdown………………45
Table………………………………………………………………………………………………47
dc.language.isoen
dc.title內向整流鉀離子通道亞家族成員 (Kcnj1a) 調控斑馬魚表皮離子細胞的鉀離子平衡zh_TW
dc.titleInwardly rectifying potassium channels (Kcnj1a) are involved in potassium homeostasis of zebrafish ionocytesen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃鵬鵬,黃聲蘋,陳建璋,張茂山(Mau-Sun Chang)
dc.subject.keyword內向整流鉀離子通道,鈉鉀幫浦,離子細胞,斑馬魚,zh_TW
dc.subject.keywordKcnj1a,Na+-K+-atpase,ionocyte,zebrafish,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2016-01-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved