請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 容志輝(Chee-Fai Yung) | |
| dc.contributor.author | Wei-Chiao Hsu | en |
| dc.contributor.author | 許惟喬 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:36:36Z | - |
| dc.date.available | 2017-02-16 | |
| dc.date.copyright | 2016-02-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-27 | |
| dc.identifier.citation | [1] K. Glover, All optimal Hankel-norm approximations of linear multivariable
systems and their L∞-error bounds, Int. J. Control, 39 (1984), 1115–1193. [2] E. A. Jonckheere and L. M. Silverman, A new set of invariants for linear systems–application to reduced order compensator design, IEEE Trans. Automat. Control, 28 (1983), 953–964. [3] J.D. Doyle, Guaranteed margins for LQG regulators, IEEE Trans. Automat. Control, 23 (1978), 756–757. [4] D. Mustafa and K. Glover, Controller Reduction by H∞-balanced truncation, IEEE Trans. Automat. Control, 36 (1991), 668–682. [5] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, State-Space Solutions to Standard H2 and H1 Control Problems, IEEE Trans. Automat. Control, 34 (1989), 831–846. [6] K. Glover and D. Mustafa, Derivation of the maximum entropy H∞- controller and a state-space formula for its entropy, Int. J. Control, 50 (1989), 899–916. [7] J. Bender and A. J. Laub, The Linear-Quadratic Optimal Regulator for Descriptor System, IEEE Trans. Automat. Control, 23 (1987), 672–688. [8] D. J. Cobb, Controllability, Observability, and Duality in Singular Systems, IEEE Trans. Automat. Control, 29 (1984), 1076–1082. [9] S. L. Campbell, Singular Systems of Differential Equations I, Pitman, New York, (1980). [10] S. L. Campbell, Singular Systems of Differential Equations II, Pitman, New York, (1982). [11] D. J. Cobb, Feedback and Pole Placement in Descriptor Variable Systems , Int. J. Control, 33 (1981), 1135-1146. [12] D. J. Cobb, Descriptor Variable Systems and Optimal State Regulation , IEEE Transactions on Automatic Control, 28 (1983), 601-611. [13] B. R. Copeland and M. G. Safonov, A Generalized Eigenproblem Solution for Singular H2 and H1 Problems, Control and Dynamic Systems, 50 (1992), 331-394. [14] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, (1989). [15] D. G. Luenberger, Singular Dynamic Leontieff Systems, Econometrica, 45 (1977), 991–995. [16] D. G. Luenberger, Dynamic Equations in Descriptor Form, IEEE Trans. Automat. Control, 22 (1977), 312–321. [17] K. L. Hsiung, and L. Lee, Lyapunov inequality and Bounded Real Lemma for Discrete-Time Descriptor Systems, IEE Proc.-Control Theory Appl., 146 (1999), 327-331. [18] T. Stykel, Gramian-based model reduction for descriptor systems, Math. Control Signals Systems, 16 (2004), 297–319. [19] J. Mockel, T. Reis, and T. Stykel, Linear-quadratic Gaussian balancing for model reduction of differential-algebraic systems, Int. J. Control, 84 (2011), 1627–1643. [20] A. Kawamoto, K. Takaba, and T. Katayama, On the Generalized Algebraic Riccati Equation for Continuous-time Descriptor Systems, Linear Algebra and its Applications, 296 (1999) 1-14. [21] X. Xin, Strong solutions and maximal solutions of generalized algebraic Riccati equations, Proceedings of the 47th IEEE COnference on Decision and COntrol, Cancun, Mexico, (2008) 528-533. [22] X. Zhang, G.P.Zhong, C. Tan, Existence and representations of stabilizing solutions to generalized algebraic Riccati equations, Proceedings of the 48th IEEE COnference on Decision and Control, Shanghai, (2009) 5923-5928. [23] H. S. Wang, C. F. Yung, and F. R. Chang, Bounded Real Lemma and H1 Control for Descriptor Systems, IEE Proceeding D: Control Theory and Its Applications, 145 (1998), 316-322. [24] H. S. Wang, C. F. Yung, and F. R. Chang, H∞ Control for Nonlinear Descriptor Systems, Lecture notes in control and information sciences, Berlin; Springer-Verlag, (2006). [25] C. F. Yung, H.S. Wang, and F.R. Chang, Mixed H2/H∞ control problem for descriptor systems, J. Chinese. Inst. Engrs., 23 (2000), 749-757. [26] P. F. Wu and C. F. Yung, On the geometric and dynamic structures of the H2 optimal and H1 central controllers, Automatica, 46 (2010), 1824-1828. [27] C. F. Yung, A Geometric Approach to H∞ Controller Reduction and Entropy Minimization for Descriptor Systems, NSC Report, NSC-102-2221-E-019-052, (2014). [28] V. Vidyasagar, The graph metric for unstable plants and robustness estimates for feedback stability, IEEE Trans. Automat. Control, 29 (2001), 403- 418. [29] Liu, W., Sreeram, V., Teo, K., and Xie, B. (1997), Normalized Coprime Factorization for Singular Systems, in Proceedings of the American Control Conference, Albuquerque, NM, June 4-6, pp. 2125-2126. [30] Zhou, K., Doyle, J., and Glover, K. (1996), Robust and Optimal Control, Princeton: Prentice-Hall. [31] D. Mustafa, K. Glover, Minimum Entropy H1 Control, Lecture Notes in Control and Information Sciences, Springer-Verlag. [32] Lancaster, P., and Rodman, L., Algebraic Riccati Equations, Oxford: Clarendon Press (1955). [33] Gantmacher, F., Theory of Matrices, Vol. 2, New York: Chelsea(1959). [34] Dai, L., Singular Control Systems, Vol. 118 of Lecture Notes in Control and Information Sciences, Berlin, Heidelberg: Springer-Verlag(1989). [35] Sefton, J., and Ober, R., On the Gap Metric and Coprime Factor Perturbations, Automatica, 29, 723-734(1993). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502 | - |
| dc.description.abstract | 本文透過兩個퐻∞型態的「廣義代數黎卡提方程」將「H∞平衡截斷法」推廣至探討連續時間線性微分代數方程(描述子系統)的模型簡化問題,文中亦估算出了經H∞平衡截斷後的簡化系統與原系統以「間隙度量」為距離之精確誤差;而本文另一大重點為導出了「零D定理」,指出了在連續時間線性描述子系統中,任一給定的線性描述子系統(其D不為零),皆可以等價為另一個(D為零)之線性描述子系統。 | zh_TW |
| dc.description.abstract | In this paper, by two H∞ generalized algebraic Riccati equations ,we generalize the method of H∞ balanced truncation to the problem of model reduction of linear
time-invariant continuous-time differential-algebraic equations (descriptor systems) and we also derive the error of between the reduced system and the original system by using the so-called gap metric. On the other hand, we give and prove a new theorem, Zero-D theorem. According to this theorem, for any given linear time-invariant continuous-time descriptor system with D ≠ 0, it can be equivalent to another linear time-invariant continuous-time descriptor system with D = 0. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:36:36Z (GMT). No. of bitstreams: 1 ntu-104-R01221017-1.pdf: 1306418 bytes, checksum: c798bd5918b3930080259eba73e10800 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 1 Introduction 1 2 Notations and Control Theoretic Preliminaries 5 3 Zero-D Theorem 9 4 Generalized Algebraic Riccati Equations of H∞ type 12 5 Normalized Coprime Factorization Constructed by Solutions of GAREs 19 6 H∞ Gramians and 퐻∞ Balanced Realizations 23 7 H∞ Balanced Truncation and Truncation Error Estimation 25 8 Numerical Example 28 Bibliography 31 | |
| dc.language.iso | en | |
| dc.subject | 間隙度量 | zh_TW |
| dc.subject | 模型簡化 | zh_TW |
| dc.subject | 描述子系統 | zh_TW |
| dc.subject | 模型簡化 | zh_TW |
| dc.subject | 平衡截斷 | zh_TW |
| dc.subject | 平衡截斷 | zh_TW |
| dc.subject | 廣義代數黎卡提方程 | zh_TW |
| dc.subject | 間隙度量 | zh_TW |
| dc.subject | 零D定理 | zh_TW |
| dc.subject | 微分代數方程 | zh_TW |
| dc.subject | 廣義代數黎卡提方程 | zh_TW |
| dc.subject | 微分代數方程 | zh_TW |
| dc.subject | 零D定理 | zh_TW |
| dc.subject | 描述子系統 | zh_TW |
| dc.subject | Zero-D Theorem | en |
| dc.subject | generalized algebraic Riccati equations | en |
| dc.subject | balanced truncation | en |
| dc.subject | differential-algebraic equation | en |
| dc.subject | descriptor systems | en |
| dc.subject | gap metric | en |
| dc.subject | Zero-D Theorem | en |
| dc.subject | generalized algebraic Riccati equations | en |
| dc.subject | balanced truncation | en |
| dc.subject | differential-algebraic equation | en |
| dc.subject | descriptor systems | en |
| dc.subject | gap metric | en |
| dc.title | 以H-infinity平衡截斷法研究微分代數系統 | zh_TW |
| dc.title | H-infinity Balanced Truncation Method for Model Reduction of Differential-Algebraic Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張志中(Chih-Chung Chang) | |
| dc.contributor.oralexamcommittee | 黃皇男(huang-nan huang) | |
| dc.subject.keyword | 廣義代數黎卡提方程,平衡截斷,微分代數方程,描述子系統,模型簡化,間隙度量,零D定理, | zh_TW |
| dc.subject.keyword | generalized algebraic Riccati equations,balanced truncation,differential-algebraic equation,descriptor systems,gap metric,Zero-D Theorem, | en |
| dc.relation.page | 33 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
