Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor容志輝(Chee-Fai Yung)
dc.contributor.authorWei-Chiao Hsuen
dc.contributor.author許惟喬zh_TW
dc.date.accessioned2021-06-15T13:36:36Z-
dc.date.available2017-02-16
dc.date.copyright2016-02-16
dc.date.issued2015
dc.date.submitted2016-01-27
dc.identifier.citation[1] K. Glover, All optimal Hankel-norm approximations of linear multivariable
systems and their L∞-error bounds, Int. J. Control, 39 (1984), 1115–1193.
[2] E. A. Jonckheere and L. M. Silverman, A new set of invariants for
linear systems–application to reduced order compensator design, IEEE Trans.
Automat. Control, 28 (1983), 953–964.
[3] J.D. Doyle, Guaranteed margins for LQG regulators, IEEE Trans. Automat.
Control, 23 (1978), 756–757.
[4] D. Mustafa and K. Glover, Controller Reduction by H∞-balanced truncation,
IEEE Trans. Automat. Control, 36 (1991), 668–682.
[5] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis,
State-Space Solutions to Standard H2 and H1 Control Problems, IEEE Trans.
Automat. Control, 34 (1989), 831–846.
[6] K. Glover and D. Mustafa, Derivation of the maximum entropy H∞-
controller and a state-space formula for its entropy, Int. J. Control, 50 (1989),
899–916.
[7] J. Bender and A. J. Laub, The Linear-Quadratic Optimal Regulator for
Descriptor System, IEEE Trans. Automat. Control, 23 (1987), 672–688.
[8] D. J. Cobb, Controllability, Observability, and Duality in Singular Systems,
IEEE Trans. Automat. Control, 29 (1984), 1076–1082.
[9] S. L. Campbell, Singular Systems of Differential Equations I, Pitman, New
York, (1980).
[10] S. L. Campbell, Singular Systems of Differential Equations II, Pitman, New
York, (1982).
[11] D. J. Cobb, Feedback and Pole Placement in Descriptor Variable Systems ,
Int. J. Control, 33 (1981), 1135-1146.
[12] D. J. Cobb, Descriptor Variable Systems and Optimal State Regulation ,
IEEE Transactions on Automatic Control, 28 (1983), 601-611.
[13] B. R. Copeland and M. G. Safonov, A Generalized Eigenproblem Solution
for Singular H2 and H1 Problems, Control and Dynamic Systems, 50
(1992), 331-394.
[14] L. Dai, Singular Control Systems, Lecture Notes in Control and Information
Sciences, 118, Springer-Verlag, Berlin, (1989).
[15] D. G. Luenberger, Singular Dynamic Leontieff Systems, Econometrica, 45
(1977), 991–995.
[16] D. G. Luenberger, Dynamic Equations in Descriptor Form, IEEE Trans.
Automat. Control, 22 (1977), 312–321.
[17] K. L. Hsiung, and L. Lee, Lyapunov inequality and Bounded Real Lemma
for Discrete-Time Descriptor Systems, IEE Proc.-Control Theory Appl., 146
(1999), 327-331.
[18] T. Stykel, Gramian-based model reduction for descriptor systems, Math.
Control Signals Systems, 16 (2004), 297–319.
[19] J. Mockel, T. Reis, and T. Stykel, Linear-quadratic Gaussian balancing
for model reduction of differential-algebraic systems, Int. J. Control, 84 (2011),
1627–1643.
[20] A. Kawamoto, K. Takaba, and T. Katayama, On the Generalized
Algebraic Riccati Equation for Continuous-time Descriptor Systems, Linear
Algebra and its Applications, 296 (1999) 1-14.
[21] X. Xin, Strong solutions and maximal solutions of generalized algebraic Riccati
equations, Proceedings of the 47th IEEE COnference on Decision and
COntrol, Cancun, Mexico, (2008) 528-533.
[22] X. Zhang, G.P.Zhong, C. Tan, Existence and representations of stabilizing
solutions to generalized algebraic Riccati equations, Proceedings of the
48th IEEE COnference on Decision and Control, Shanghai, (2009) 5923-5928.
[23] H. S. Wang, C. F. Yung, and F. R. Chang, Bounded Real Lemma and
H1 Control for Descriptor Systems, IEE Proceeding D: Control Theory and
Its Applications, 145 (1998), 316-322.
[24] H. S. Wang, C. F. Yung, and F. R. Chang, H∞ Control for Nonlinear
Descriptor Systems, Lecture notes in control and information sciences, Berlin;
Springer-Verlag, (2006).
[25] C. F. Yung, H.S. Wang, and F.R. Chang, Mixed H2/H∞ control problem
for descriptor systems, J. Chinese. Inst. Engrs., 23 (2000), 749-757.
[26] P. F. Wu and C. F. Yung, On the geometric and dynamic structures of the
H2 optimal and H1 central controllers, Automatica, 46 (2010), 1824-1828.
[27] C. F. Yung, A Geometric Approach to H∞ Controller Reduction and Entropy
Minimization for Descriptor Systems, NSC Report, NSC-102-2221-E-019-052,
(2014).
[28] V. Vidyasagar, The graph metric for unstable plants and robustness estimates
for feedback stability, IEEE Trans. Automat. Control, 29 (2001), 403-
418.
[29] Liu, W., Sreeram, V., Teo, K., and Xie, B. (1997), Normalized Coprime
Factorization for Singular Systems, in Proceedings of the American
Control Conference, Albuquerque, NM, June 4-6, pp. 2125-2126.
[30] Zhou, K., Doyle, J., and Glover, K. (1996), Robust and Optimal
Control, Princeton: Prentice-Hall.
[31] D. Mustafa, K. Glover, Minimum Entropy H1 Control, Lecture Notes
in Control and Information Sciences, Springer-Verlag.
[32] Lancaster, P., and Rodman, L., Algebraic Riccati Equations, Oxford:
Clarendon Press (1955).
[33] Gantmacher, F., Theory of Matrices, Vol. 2, New York: Chelsea(1959).
[34] Dai, L., Singular Control Systems, Vol. 118 of Lecture Notes in Control and
Information Sciences, Berlin, Heidelberg: Springer-Verlag(1989).
[35] Sefton, J., and Ober, R., On the Gap Metric and Coprime Factor Perturbations, Automatica, 29, 723-734(1993).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502-
dc.description.abstract本文透過兩個퐻∞型態的「廣義代數黎卡提方程」將「H∞平衡截斷法」推廣至探討連續時間線性微分代數方程(描述子系統)的模型簡化問題,文中亦估算出了經H∞平衡截斷後的簡化系統與原系統以「間隙度量」為距離之精確誤差;而本文另一大重點為導出了「零D定理」,指出了在連續時間線性描述子系統中,任一給定的線性描述子系統(其D不為零),皆可以等價為另一個(D為零)之線性描述子系統。zh_TW
dc.description.abstractIn this paper, by two H∞ generalized algebraic Riccati equations ,we generalize the method of H∞ balanced truncation to the problem of model reduction of linear
time-invariant continuous-time differential-algebraic equations (descriptor systems) and we also derive the error of between the reduced system and the original system by using the so-called gap metric. On the other hand, we give and prove a new theorem, Zero-D theorem. According to this theorem, for any given linear time-invariant continuous-time descriptor system with D ≠ 0, it can be equivalent to another linear time-invariant continuous-time descriptor system with D = 0.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:36:36Z (GMT). No. of bitstreams: 1
ntu-104-R01221017-1.pdf: 1306418 bytes, checksum: c798bd5918b3930080259eba73e10800 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
1 Introduction 1
2 Notations and Control Theoretic Preliminaries 5
3 Zero-D Theorem 9
4 Generalized Algebraic Riccati Equations of H∞ type 12
5 Normalized Coprime Factorization Constructed by
Solutions of GAREs 19
6 H∞ Gramians and 퐻∞ Balanced Realizations 23
7 H∞ Balanced Truncation and Truncation Error Estimation 25
8 Numerical Example 28
Bibliography 31
dc.language.isoen
dc.subject間隙度量zh_TW
dc.subject模型簡化zh_TW
dc.subject描述子系統zh_TW
dc.subject模型簡化zh_TW
dc.subject平衡截斷zh_TW
dc.subject平衡截斷zh_TW
dc.subject廣義代數黎卡提方程zh_TW
dc.subject間隙度量zh_TW
dc.subject零D定理zh_TW
dc.subject微分代數方程zh_TW
dc.subject廣義代數黎卡提方程zh_TW
dc.subject微分代數方程zh_TW
dc.subject零D定理zh_TW
dc.subject描述子系統zh_TW
dc.subjectZero-D Theoremen
dc.subjectgeneralized algebraic Riccati equationsen
dc.subjectbalanced truncationen
dc.subjectdifferential-algebraic equationen
dc.subjectdescriptor systemsen
dc.subjectgap metricen
dc.subjectZero-D Theoremen
dc.subjectgeneralized algebraic Riccati equationsen
dc.subjectbalanced truncationen
dc.subjectdifferential-algebraic equationen
dc.subjectdescriptor systemsen
dc.subjectgap metricen
dc.title以H-infinity平衡截斷法研究微分代數系統zh_TW
dc.titleH-infinity Balanced Truncation Method for Model Reduction of Differential-Algebraic Systemsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.coadvisor張志中(Chih-Chung Chang)
dc.contributor.oralexamcommittee黃皇男(huang-nan huang)
dc.subject.keyword廣義代數黎卡提方程,平衡截斷,微分代數方程,描述子系統,模型簡化,間隙度量,零D定理,zh_TW
dc.subject.keywordgeneralized algebraic Riccati equations,balanced truncation,differential-algebraic equation,descriptor systems,gap metric,Zero-D Theorem,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2016-01-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved