Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王慧瑜
dc.contributor.authorKo-Wei Changen
dc.contributor.author張格唯zh_TW
dc.date.accessioned2021-06-15T13:35:34Z-
dc.date.available2016-02-16
dc.date.copyright2016-02-16
dc.date.issued2016
dc.date.submitted2016-01-28
dc.identifier.citationAoki, I., and K. Miyashita. 2000. Dispersal of larvae and juvenile of Japanese
anchovy Engraulis japonicus in the Kuroshio Extension and Kuroshio-Oyashio transition regions, western North Pacific Ocean. Fisheries Research, 49, 155-164.
Arai, T., M. Ohji, and T. Hirata. 2007. Trace metal deposition in teleost fish otolith
as an environmental indicator. Water, Air, and Soil Pollution, 179, 255–263.
Ashford, J., M. Dinniman, C. Brooks, A. Andrews, E. Hofmann, G. Cailliet,
C. Jones, and N. Ramanna. 2012. Does large-scale ocean circulation structure life history connectivity in Antarctic toothfish (Dissostichus mawsoni)? Canadian Journal of Fisheries and Aquatic Sciences, 69, 1903-1919.
Bath, G. E., S. R. Thorrold, C. M. Jones, S. E. Campana, J.W. McLaren, and J. W. H.
Lam. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta, 64, 1705–1714.
Brophy, D., B. Danilowicz, and T. Jeffries. 2003. The detection of elements in larval
otoliths from Atlantic herring using laser ablation ICP-MS. Journal of Fish Biology, 63, 990–1007.
Brophy, D., T. E. Jeffries, and B. S. Danilowicz. 2004. Elevated manganese
concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Marine Biology, 144, 779–786.
Buckel, J. A., B. L. Sharack, and V. S. Zdanowicz. 2004. Effect of diet on otolith
composition in Pomatomus saltatrix, an estuarine piscivore. Journal of Fish Biology, 64, 1469–1484.
Campana, S. E. 1999. Chemistry and composition of fish otoliths: pathways,
mechanisms and applications. Marine ecology. Progress series, 188, 263-297.
Campana, S. E., G. A. Chouinard, J. M. Hanson, A. Frechet, and J. Brattey. 2000.
Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research, 46, 343–357.
Cermeno, P., A. Uriarte, B. Morales-Nin, U. Cotano, and P. Alvarez. 2008
Setting up interpretation criteria for ageing juvenile European anchovy otoliths. Scienta Marina, 72, 733–742.
Chen, T.S., 1980. Study and investigation of Bull-ard and anchovy fisheries in
coastal waters of Taiwan. Bull. Taiwan Fish. Res. Inst, 32, 219-233.
Chen, C.S., and T. S. Chiu. 2003. Early life history traits of Japanese anchovy in the
northeastern waters of Taiwan, with reference to larval transport. Zoological Studies, 42, 248–257.
Chen, C.S., C. H. Tzeng, and T. S. Chiu. 2010. Morphological and molecular
analyses reveal separations among spatiotemporal populations of anchovy (Engraulis japonicus) in the southern East China Sea. Zoological Studies, 49, 270–282.
Chiu T.S., S. S. Young, and C. S. Chen. 1997. Monthly variation of larval anchovy
fishery in I-lan Bay NE Taiwan with an evaluation for optimal fishing season. Journal of Fisheries Society of Taiwan, 24, 273-282.
Chiu, T.S., and C. S. Chen. 2001. Growth and temporal variation of two Japanese
anchovy cohorts during their recruitment to the East China Sea. Fisheries Research, 53, 1–15.
Collins, S.M., N. Bickford, P. B. McIntyre, A. Coulon, A. J. Ulseth, D. C. Taphorn,
and A. S. Flecker. 2013. Population Structure of a Neotropical Migratory Fish: Contrasting Perspectives from Genetics and Otolith Microchemistry. Transactions of the American Fisheries Society, 142:5, 1192-1201
DiMaria, R., J. Miller, and T. Hurst. 2010. Temperature and growth effects on otolith
elemental chemistry of larval Pacific cod, Gadus macrocephalus. Environmental Biology of Fishes, 89, 453–462.
Dorval, E., C. M. Jones, R. Hannigan, and J. V. Montfrans. 2007. Relating otolith
chemistry to surface water chemistry in a coastal plain estuary. Canadian Journal of Fisheries and Aquatic Sciences, 64, 411–424.
Edmonds, J., N. Caputi, and M. Morita. 1991. Stock discrimination by trace-element
analysis of otoliths of orange roughy (Hoplostethus atlanticus), a deep-water marine teleost. Australian Journal of Marine and Freshwater Research, 42, 383-389.
Elsdon, T.S., and B. Gillanders. 2002. Interactive effects of temperature and salinity
on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences 59, 1796–1808.
Elsdon, T.S., B. K. Wells, S. E. Campana, B. M. Gillanders, C. M. Jones, K. E.
Limburg, D. H. Secor, S. R. Thorrold, and B. D. Walther. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: An Annual Review, 46, 297-330.
Fadeev, N.S., 2005. Guide to biology and fisheries of fishes of the North Pacific
Ocean. Vladivostok, TINRO-Center. 366 p.
Forrester, G.E., and S. E. Swearer. 2002. Trace elements in otoliths indicate the use
of open-coast versus bay nursery habitats by juvenile California halibut. Mairne Ecology Progress Series, 241, 201−213
Forrester, G., 2005. A field experiment testing for correspondence between trace
elements in otoliths and the environment and for evidence of adaptation to prior habitats. Estuaries and Coasts, 28, 974–981.
Gillanders, B.M., 2002. Connectivity between juvenile and adult fish populations:
adults remain near their recruitment estuaries? Marine Ecology Progress Series 240, 215–223.
Hanson, P.J., and V. S. Zdanowicz. 1999. Elemental composition of otoliths from
Atlantic croaker along an estuarine pollution gradient. Journal of Fish Biology, 54, 656–668.
Hilborn, R., T. P. Quinn, D. E. Schindle, and D. E. Rogers. 2003 Biocomplexity and
fisheries sustainability. Proceedings of the National Academy of Sciences, 100, 6564–6568.
Hoff, G. R., and L. A. Fuiman. 1995. Environmentally induced variation in elemental
composition of red drum (Sciaenops Ocellatus) otoliths. Bulletin of Marine Science, 56, 578–591.
Iles, T.D., and M. Sinclair. 1982. Atlantic herring: stock discreteness and abundance.
Science 215, 627–633.
Jochum, K.P., U. Nohl, K. Herwig, E. Lammel, B. Stoll, and A. W. Hofmann. 2005.
GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29, 333–338.
Kalish, J.M., 1989. Otolith microchemistry: validation of the effects of physiology,
age and environment on otolith composition. Journal of Experimental Marine Biology and Ecology, 132, 151–178.
Kim J. Y., Y. S. Kang, H. Oh, Y. S. Suh, and J. D. Hwang, 2005. Spatial distribution
of early life stages of anchovy (Engraulis japonicus) and hairtail (Trichiurus lepturus) and their relationship with oceanographic features of the East China Sea during the 1997-1998 El Nino event. Estuarine, Coastal and Shelf Science, 63, 13-21.
Linge, K. L., and K. E. Jarvis. 2009. Quadrupole ICP-MS: Introduction to
Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards and Geoanalytical Research, 33, 445-467.
Limburg, K.E., 1995. Otolith strontium traces environmental history of subyearling
American shad Alosa sapidissima. Marine Ecology Progress Series, 119, 25–35.
Macdonald, J., J. Farley, N. Clear, A. Williams, T. Carter, C. Davies, and S. Nicol.
2013. Insights into mixing and movement of South Pacific albacore Thunnus alalunga derived from trace elements in otoliths. Fisheries Research, 148, 56-63.
Martin, G. B., and S. R. Thorrold. 2005. Temperature and salinity effects on
magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series, 293, 223–232.
Mercier, L., A. M. Darnaude, O. Bruguier, R. P. Vasconcelos, H. N. Cabral, M. J.
Costa, M. Lara, D. L. Jones, and D. Mouillot. 2011. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecological Applications, 21, 1352–1364.
Miller, J. A., 2009. The effects of temperature and water concentration on the
otolith incorporation of barium and manganese in black rockfish Sebastes melanops. Journal of Fish Biology, 75, 39–60.
Miller, J.A., 2011. Effects of water temperature and barium concentration on otolith
composition along a salinity gradient: Implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology, 405, 42–52.
NOAA_OI_SST_V2 data. NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.
Retrieved from http://www.esrl.noaa.gov/psd/
Policansky, D., and J. J. Magnuson. 1998 Genetics, metapopulations, and ecosystem
management of fisheries. Ecological Applications, 8, S119–S123.
Poulsen, J., and A. French. 2008. Discriminant function analysis. San
Francisco State University: San Francisco, CA. Retrieved from http://userwww.sfsu.edu/~efc/classes/biol710/discrim/discrim.pdf.
Radtke, R., D. Townsend, S. Folsom, and M. Morrison. 1990. Strontium:calcium
oncentration ratios in otoliths of herring larvae as indicators of environmental histories. Environmental Biology of Fishes, 27, 51–61
Radtke, R.L., and D. J. Shafer. 1992. Environmental sensitivity of fish Otolith
Microchemistry. Australian Journal of Marine and Freshwater Research, 43 , 935–951
Ranaldi, M. M., and M. M. Gagnon. 2008. Zinc incorporation in the otoliths of
juvenile pink snapper (Pagrus auratus Forster): The influence of dietary versus waterborne sources. Journal of Experimental Marine Biology and Ecology, 360, 56–62.
Reiss, H., G. Hoarau, M. Dickey-Collas, and W. J. Wolff. 2009. Genetic population
structure of marine fish: mismatch between biological and fisheries management units. Fish and Fisheries, 10, 361–395.
Sadovy, Y., Severin, K.P., 1992. Trace-elements in biogenic aragonite – correlation
of body growth-rate and strontium levels in the otoliths of the white grunt,
Haemulon plumieri (Pisces, Haemulidae). Bulletin of Marine Science, 50, 237–257.
Sanchez-Jerez, P., B. Gillanders, and M. J. Kingsford. 2002. Spatial variability of
trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. Journal of Fish Biology, 61, 801–821.
Schindler, D. E., R. Hilborn, B. Chasco, C. P. Boatright, T. P. Quinn, L. A. Rogers,
and M. S. Webster. 2010. Population diversity and the portfolio effect in an exploited species. Nature, 465, 609–612.
Sturrock, A. M., C. N. Trueman, A. M. Darnaude, and E. Hunter. 2012. Can otolith
elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology, 81(2), 766-795.
Sturrock, A. M., C. N. Trueman, J. A. Milton, C. P. Waring, M. J. Cooper, and
E. Hunter. 2014. Physiological influences can outweigh environmental signals in otolith microchemistry research. Marine Ecology Progress Series, 500, 245-264
Thorrold, S. R., C. M. Jones, and S. E. Campana. 1997. Response of otolith
microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnology and Oceanography, 42, 102–111.
Toole, C., D. Markle, and P. Harris. 1993. Relationships between otolith
microstructure, microchemistry, and early life history events in Dover sole, Microstomus pacificus. Fishery Bulletin, 91, 732–753.
Tu, C.Y., Y. H. Tseng, T. S. Chiu, M. L. Shen, C. H. Hsieh. 2012. Using coupled
fish behavior–hydrodynamic model to investigate spawning migration of Japanese anchovy, Engraulis japonicus, from the East China Sea to Taiwan. Fisheries Oceanography, 21, 255-268.
Uriarte A., C. Duenas, E. Duhamel, P. Grellier, I. Rico, and B. Villamor. 2006.
Anchovy Otolith Workshop, Working Document to the 2007 ICES Planning Group on Commercial Catch, Discards and Biological Sampling (PGCCDBS) (5-9 March). In : AZTI, Pasaia, Basque Country, Spain, 58 p.
Zenitani, H., and R. Kimura. 2007. Elemental analysis of otoliths of Japanese
anchovy: Trial to discriminate between Seto Inland Sea and Pacific stock. Fisheries Science, 73, 1-8.
Zhao, X., Y. Wang, and F. Dai. 2008. Depth-dependent target strength of anchovy
(Engraulis japonicus) measured in situ. ICES Journal of Marine Science, 65, 882-888.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51475-
dc.description.abstract漁業管理通常以族群為基本單位,管理做法須符合族群的生活史特性。因此,了解同種內的族群單元以及各族群的族群動態為漁業研究的重要議題。日本鯷魚(Engraulis japonicus)為台灣沿近海漁獲物種之一,過去文獻發現日本鯷從中國東海順著中國沿岸流南下至北台灣沿岸(如淡水、宜蘭)產卵,主要的產卵期為春天;此外,日本鯷仔稚魚在部分區域出現季節性的分佈(如宜蘭海域的春天及秋天為主要捕獲仔稚魚的季節)。前人根據基因分析發現宜蘭海域的日本鯷仔稚魚之族群結構在有季節性的顯著差異;但在同為春天的淡水區域與宜蘭區域的仔稚魚則沒有顯著差異;此外春天的淡水區域與秋天的宜蘭區域之仔稚魚亦沒有顯著差異。由於仔稚魚時期的高死亡率,仔稚魚族群無法百分之百補充到成魚族群中,因此仔稚魚的族群結構不一定能反映成魚的族群結構。根據耳石中化學元素的組成以及濃度變化可以反映環境變化的特性,本研究透過雷射剝蝕感應耦合電漿質譜儀分析耳石核心中元素的組成以及濃度來探討日本鯷出生海域的環境差異,以推估其族群結構。實驗設計包含來自淡水春天、宜蘭春天及宜蘭秋天的65隻仔稚魚和淡水、宜蘭與澎湖混獲的54隻成魚,所有樣本出生於2010至2013年間。我們使用主成分分析、線性回歸去分析耳石核心中元素濃度之空間及時間的變化,並使用線性判別分析量化仔稚魚及成魚耳石核心元素濃度變化的關聯性。主成分分析的結果顯示,仔稚魚耳石核心中的硼、鎂、鋅與主成份的相關性高(即主成份負荷的絕對值大於0.25者),可作為指標元素。在成魚則有硼、鎂、釸、錳、鋅、以及鋇為指標元素。這些指標元素中,仔稚魚的耳石核心中硼的濃度可以反映年間變化,但空間上及季節上,這些指標元素在仔稚魚或是成魚都沒有顯著的趨勢。線性回歸的結果也顯示仔稚魚耳石核心中的元素濃度在年間有顯著的不同,其餘無論仔稚魚或是成魚在空間上及季節上則沒有顯著的差異,驗證了主成分分析的結果。線性判別分析的結果顯示,以成魚耳石核心的化學元素濃度建立判別函式來判別仔稚魚的出生海域只達到33.3%的正確判別率,此結果代表仔稚魚與成魚間耳石核心中元素的濃度變化關聯性不強。綜合我們的結果,日本鯷耳石核心中元素濃度在空間上以及季節上不顯著的趨勢可能反映出它們的棲地環境於本研究採樣海域、季節均類似。雖然我們的結果可能會受限於實驗的空間尺度較小,然而,前人的基因研究以及我們的結果均顯示日本鯷可能是一個單一族群。zh_TW
dc.description.abstractA population is the basic unit for fisheries management and conservation. Consequently, to achieve effective fisheries management it is necessary to explore population structures and the processes related to population dynamics. In this study, we investigated population structure of the Japanese anchovy Engraulis japonicus, an important fisheries species with several spatial and seasonal spawning units near Taiwan coastal waters. Based on genetic analysis of larval samples, a previous study suggested weak spatial but potential within-location seasonal structuring for this species. However, as larval mortality is usually high, it is unclear if the observed larval population structure would hold true at the adult stage. Here, we explored variation in concentrations of trace elements in the cores of otoliths using the LA-ICP-MS for both larval and adult Japanese anchovies. Specifically, our sampling design involved using 64 larvae collected from Tamsui and Ilan in the spring and from Ilan in autumn, and 54 adults from bycatch samples from Tamsui, Ilan, and Penghu, during 2010-2013. Principal component analysis indicated that otolith core elemental compositions for the larval samples showed significant annual changes, but there were no significant spatial or seasonal patterns in the elemental compositions for either larval or adult samples. Furthermore, classification of larval samples based on the linear discriminant functions resulted in low correct classification rates (33.3%), indicating weak relationships in otolith core elemental compositions between larvae and adults. The lack of spatial or seasonal structuring for the otolith core elemental concentrations may reflect homogeneous habitat conditions, which might partially result from the relative small spatial scale in our study design. Nonetheless, based both on the previous and our studies, the inconspicuous population structure suggests that the Japanese anchovy may be a homogeneous population.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:35:34Z (GMT). No. of bitstreams: 1
ntu-105-R02241211-1.pdf: 4292906 bytes, checksum: 0b8cb8bc002c4b61f82c715a40b9460a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
口試委員審定書.............................................................................................................i
誌謝................................................................................................................................ii
中文摘要.......................................................................................................................iii
Abstract.........................................................................................................................v
Contents.......................................................................................................................vii
Introduction...................................................................................................................1
Material and methods...................................................................................................7
Sampling.....................................................................................................................7
Otolith sample preparation for age determination and LA-ICP-MS..........................7
Analysis of otolith elemental compositions and concentrations...............................10
Statistical analyses....................................................................................................13
Results...........................................................................................................................15
Age compositions of larval and adult anchovy.........................................................15
Variation in otolith elemental concentration ratios...................................................16
Principal component analysis of elemental signatures..............................................17
Association between the elemental signatures of the larval and adult stages...........18
Discussion......................................................................................................................19
The indicator elements of elemental signatures........................................................19
Population structure of anchovy based on otolith elemental signatures....................22
Implications for the population structure of Japanese anchovy................................23
References.................................................................... ................................................25
Tables............................................................................................................................36
Figures...........................................................................................................................54
Appendices....................................................................................................................58
dc.language.isoen
dc.title利用耳石元素組成探討日本鯷之族群結構zh_TW
dc.titleOtolith microchemistry to explore population structure for the Japanese anchovy Engraulis japonicusen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee朱美妃,蕭仁傑
dc.subject.keyword族群結構,日本鯷,耳石化學元素分析,雷射剝蝕感應耦合電漿質譜儀,空間及時間變化,zh_TW
dc.subject.keywordpopulation structure,Japanese anchovy,otolith microchemistry,LA-ICP-MS,spatial and temporal variation,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2016-01-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved