請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51462
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張建成(Chien-Cheng Chang) | |
dc.contributor.author | Yu-Huan Lin | en |
dc.contributor.author | 林育環 | zh_TW |
dc.date.accessioned | 2021-06-15T13:35:06Z | - |
dc.date.available | 2021-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-29 | |
dc.identifier.citation | [1]Haeberle, Stefan, and Roland Zengerle. 'Microfluidic platforms for lab-on-a-chip applications.' Lab on a Chip 7.9 (2007): 1094-1110.
[2]Folch, Albert. Introduction to BioMEMS. CRC Press, 2012. [3]Mark, Daniel, et al. 'Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.' Chemical Society Reviews 39.3 (2010): 1153-1182. [4]Rivet, Catherine, et al. 'Microfluidics for medical diagnostics and biosensors.'Chemical Engineering Science 66.7 (2011): 1490-1507. [5]Dittrich, Petra S., and Andreas Manz. 'Lab-on-a-chip: microfluidics in drug discovery.' Nature Reviews Drug Discovery 5.3 (2006): 210-218. [6]Weibel, Douglas B., and George M. Whitesides. 'Applications of microfluidics in chemical biology.' Current opinion in chemical biology 10.6 (2006): 584-591. [7]Abgrall, P., and A. M. Gue. 'Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review.' Journal of Micromechanics and Microengineering 17.5 (2007): R15. [8]Burns, Mark A., et al. 'An integrated nanoliter DNA analysis device.' Science282.5388 (1998): 484-487. [9]Mathers, Colin D., and Dejan Loncar. 'Projections of global mortality and burden of disease from 2002 to 2030.' Plos med 3.11 (2006): e442. [10]Kannel, William B., and Albert J. Belanger. 'Epidemiology of heart failure.'American heart journal 121.3 (1991): 951-957. [11]Pai, Vinita B., and Milap C. Nahata. 'Cardiotoxicity of chemotherapeutic agents.' Drug safety 22.4 (2000): 263-302. [12]Lombardino, Joseph G., and John A. Lowe. 'The role of the medicinal chemist in drug discovery—then and now.' Nature Reviews Drug Discovery 3.10 (2004): 853-862. [13]McKeague, Maureen, Amanda Giamberardino, and Maria C. DeRosa.Advances in aptamer-based biosensors for food safety. INTECH Open Access Publisher, 2011. Biosensors, Prof. Vernon Somerset (Ed.), ISBN: 978-953-307-486-3, InTech, DOI: 10.5772/22350. Available from: http://www.intechopen.com/books/environmental-biosensors/advances-in-aptamer-based-biosensors-for-food-safety [14]Jayasena, Sumedha D. 'Aptamers: an emerging class of molecules that rival antibodies in diagnostics.' Clinical chemistry 45.9 (1999): 1628-1650. [15]Miklas, Jason. In Vitro Human Engineered Myocardium: A Study into both Pathological and Physiological Hypertrophy. Diss. 2013. [16]Radisic, Milica, et al. 'Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.' Proceedings of the National Academy of Sciences 101.52 (2004): 18129-18134. [17]Engler, Adam J., et al. 'Matrix elasticity directs stem cell lineage specification.' Cell 126.4 (2006): 677-689. [18]Engler, Adam J., et al. 'Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation.' Methods in cell biology 83 (2007): 521-545. [19]Berry, Mark F., et al. 'Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance.' American Journal of Physiology-Heart and Circulatory Physiology 290.6 (2006): H2196-H2203. [20]Engler, Adam J., et al. 'Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating.' Journal of cell science121.22 (2008): 3794-3802. [21]Ivester, Charles T., et al. 'Contraction accelerates myosin heavy chain synthesis rates in adult cardiocytes by an increase in the rate of translational initiation.' Journal of Biological Chemistry 270.37 (1995): 21950-21957. [22]Salameh, Aida, et al. 'Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43.' Circulation research 106.10 (2010): 1592-1602. [23]Lee, Chengkuo, et al. 'A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators.' Selected Topics in Quantum Electronics, IEEE Journal of 15.5 (2009): 1529-1536. [24]Agarwal, Ashutosh, et al. 'Microfluidic heart on a chip for higher throughput pharmacological studies.' Lab on a Chip 13.18 (2013): 3599-3608. [25]Grosberg, Anna, et al. 'Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip.' Lab on a chip 11.24 (2011): 4165-4173. [26]Tanaka, Yo, et al. 'Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars.' Lab on a Chip 6.2 (2006): 230-235. [27]Linder, P., et al. 'Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes.' Medical & biological engineering & computing 48.1 (2010): 59-65. [28]Simmons, Chelsey S., Bryan C. Petzold, and Beth L. Pruitt. 'Microsystems for biomimetic stimulation of cardiac cells.' Lab on a Chip 12.18 (2012): 3235-3248. [29]Manbachi, Amir, and Richard SC Cobbold. 'Development and application of piezoelectric materials for ultrasound generation and detection.' Ultrasound19.4 (2011): 187-196. [30]Lee, Chengkuo, et al. 'A 1-V operated MEMS variable optical attenuator using piezoelectric PZT thin-film actuators.' Selected Topics in Quantum Electronics, IEEE Journal of 15.5 (2009): 1529-1536. [31]Guerre, Roland, et al. 'Wafer-level transfer technologies for PZT-based RF MEMS switches.' Microelectromechanical Systems, Journal of 19.3 (2010): 548-560. [32]Jeon, Y. B., et al. 'MEMS power generator with transverse mode thin film PZT.' Sensors and Actuators A: Physical 122.1 (2005): 16-22. [33]Liu, Weiguo, Jongsoo Ko, and Weiguang Zhu. 'Influences of thin Ni layer on the electrical and absorption properties of PZT thin film pyroelectric IR sensors.' Infrared physics & technology 41.3 (2000): 169-173. [34]Woias, Peter. 'Micropumps—past, progress and future prospects.' Sensors and Actuators B: Chemical 105.1 (2005): 28-38. [35]González-Morán, Carlos O., J. J. Flores-Cuautle, and Ernesto Suaste-Gómez. 'A piezoelectric plethysmograph sensor based on a Pt wire implanted lead lanthanum zirconate titanate bulk ceramic.' Sensors 10.8 (2010): 7146-7156. [36]Phillips, Justin P., Michelle Hickey, and Panayiotis A. Kyriacou. 'Evaluation of electrical and optical plethysmography sensors for noninvasive monitoring of hemoglobin concentration.' Sensors 12.2 (2012): 1816-1826. [37]Qi, Yi, et al. 'Piezoelectric ribbons printed onto rubber for flexible energy conversion.' Nano letters 10.2 (2010): 524-528. [38]Sato, Norio, et al. 'Novel surface structure and its fabrication process for MEMS fingerprint sensor.' Electron Devices, IEEE Transactions on 52.5 (2005): 1026-1032. [39]Hsu, Yu-Hsiang, and William C. Tang. 'A microfabricated piezoelectric transducer platform for mechanical characterization of cellular events.' Smart Materials and Structures 18.9 (2009): 095014. [40]Lin, P., Y. Hsu, and C. Lee. Universal lab on a smartphone: a research of TiOPc thin film as a light dependence electrode. in SPIE BiOS. 2014. International Society for Optics and Photonics. [41]Dargahi, J., M. Parameswaran, and S. Payandeh. 'A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments.' Microelectromechanical Systems, Journal of 9.3 (2000): 329-335. [42]Park, Youn Jung, Yong Soo Kang, and Cheolmin Park. 'Micropatterning of semicrystalline poly (vinylidene fluoride)(PVDF) solutions.' European polymer journal 41.5 (2005): 1002-1012. [43]Li, Chunyan, et al. 'Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer.' Microelectromechanical Systems, Journal of 17.2 (2008): 334-341. [44]Sharma, Tushar, et al. 'Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application.' Sensors and Actuators A: Physical177 (2012): 87-92. [45]Dahiya, Ravinder S., et al. 'Deposition, processing and characterization of P (VDF-TrFE) thin films for sensing applications.' Sensors, 2008 IEEE. IEEE, 2008. [46]Introduction to Cellular BioMEMS & Biomicrofluidics 細胞微機電及微流體導論 Dr. Yu-Hsiang Hsu 許聿翔 博士 [47]Laermer, F. and A. Schilp, Method of anisotropically etching silicon. 1996, Google Patents. [48]Han, H., et al. 'Microstructure fabrication on a β-phase PVDF film by wet and dry etching technology.' Journal of Micromechanics and Microengineering 22.8 (2012): 085030. [49]Han, Hiro, et al. 'PVdf film micro fabrication for the robotics skin sensor having flexibility and high sensitivity.' Sensing Technology (ICST), 2011 Fifth International Conference on. IEEE, 2011. [50]Jiang, YongGang, et al. 'Reactive ion etching of poly (vinylidene fluoride-trifluoroethylene) copolymer for flexible piezoelectric devices.' Chinese Science Bulletin 58.17 (2013): 2091-2094. [51]Lequin, Rudolf M. 'Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA).' Clinical chemistry 51.12 (2005): 2415-2418. [52]Lequin, Rudolf M. 'Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA).' Clinical chemistry 51.12 (2005): 2415-2418. [53]EBS凌越生醫股份有限公司http://www.ebs.com.tw/zh/index [54]'Food Allergen Partnership' (Press release). FDA. January 2001. Retrieved August 20,2015. [55]Rapley, Ralph, and John M. Walker, eds. Molecular Biomethods Hand Book. No. 1646. Springer Science & Business Media, 1998. [56]Beelaert, G., et al. 'Comparative evaluation of eight commercial enzyme linked immunosorbent assays and 14 simple assays for detection of antibodies to HIV.' Journal of virological methods 105.2 (2002): 197-206. [57]Stoltenburg, Regina, Christine Reinemann, and Beate Strehlitz. 'SELEX—a (r) evolutionary method to generate high-affinity nucleic acid ligands.'Biomolecular engineering 24.4 (2007): 381-403. [58]McKeague, Maureen, Amanda Giamberardino, and Maria C. DeRosa.Advances in aptamer-based biosensors for food safety. INTECH Open Access Publisher, 2011. [59]Göktepe, Serdar, et al. 'A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis.' Journal of theoretical biology 265.3 (2010): 433-442. [60]EYang, Xiulan, Lil Pabon, and Charles E. Murry. 'Engineering Adolescence Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes.'Circulation research 114.3 (2014): 511-523. [61]Mohrman, David E., and Lois J. Heller. 'Cardiovascular physiology.' (2002). [62]Legant, Wesley R., et al. 'Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues.' Proceedings of the National Academy of Sciences 106.25 (2009): 10097-10102. [63]W. G. H. a. Abh.Sachs, “Piezoelectric,” Applied Sciences, 12, 547 (1881). [64]Yu-Hsiang Hsu, “Theory and Experiment of Electrical and Mechanical Field Interactions of Piezoelectric Systems”許聿翔, “壓電系統其力電場互動之理論與實驗: 壓電變壓器, 柔性結構控制, 及自由落體感應子之創新突破基礎,” (2002). [65]吳朗, “電子陶瓷壓電陶瓷.,” 全欣出版社, (1994 ). [66]An Overview of the Properties of Different Piezoceramic Materials, http://www.PiezoTechnologies.com [67]Bar-Cohen, Y., et al. 'Flexible, low-mass robotic arm actuated by electroactive polymers (EAP).' Proceedings of the SPIE International Smart Materials and Structures Conference. No. 3329-07. 1998. [68]D Dušek, Karel, ed. Responsive gels: volume transitions II. Springer Berlin Heidelberg, 1993. [69]Esterly, Daniel Mason. 'Manufacturing of Poly (vinylidene fluoride) and Evaluation of its Mechanical Properties.' (2002). [70]Mao, Duo, Bruce E. Gnade, and Manuel A. Quevedo-Lopez. Ferroelectric Properties and Polarization Switching Kinetic of poly (vinylidene fluoride-trifluoroethylene) Copolymer. INTECH Open Access Publisher, 2011. [71]Bar-Cohen, Yoseph, Tianji Xue, and Shyh-Shiuh Lih. 'Polymer piezoelectric transducers for ultrasonic NDE.' NDTnet 1.9 (1996): 7. [72]Mahdi, Rahman Ismael, W. C. Gan, and W. H. Majid. 'Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P (VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators.' Sensors 14.10 (2014): 19115-19127. [73]Lee, C. K. 'Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships.' The Journal of the Acoustical Society of America 87.3 (1990): 1144-1158. [74]Schmidt, V. Hugo, et al. 'Actuators based on PVDF sheets with flexible PEDOT polymer electrodes.' Electrets, 2005. ISE-12. 2005 12th International Symposium on. IEEE, 2005. [75]Chang, Wen-Chi, et al. 'Photoconductive piezoelectric polymer made from a composite of P (VDF-TrFE) and TiOPc.' Ferroelectrics 446.1 (2013): 9-17. [76]北區微機電中心網站: http://nscmems.iam.ntu.edu.tw/index.php [77]MICROPOSIT s1800 SERIES PHOTO RESISTS [78]Monroe, Michael G., Eric L. Nikkel, and Dennis M. Lazaroff. 'Method of forming MEMS device.' U.S. Patent No. 6,861,277. 1 Mar. 2005. [79]Quirk, Michael, and Julian Serda. Semiconductor manufacturing technology. Vol. 1. Upper Saddle River, NJ: Prentice Hall, 2001. [80]張志誠, 微機電技術. Vol. 32. 2002: 城邦出版集團. [81]MicroChen,SU-8 2000 Permanent Epoxy Negative Photoresist PROCESSING GUIDELINES, http://www.microchem.com/ [82]Kolomvounis, Introduction to Anatomy & Physiology ) [83]Tuleuova, Nazgul, et al. 'Development of an aptamer beacon for detection of interferon-gamma.' Analytical chemistry 82.5 (2010): 1851-1857. [84]衛生福利部疾病管制署: http://www.cdc.gov.tw/ [85]Pai, Madhukar, Lee W. Riley, and John M. Colford. 'Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review.' The Lancet infectious diseases 4.12 (2004): 761-776. [86]Arend, Sandra M., et al. 'Comparison of two interferon-γ assays and tuberculin skin test for tracing tuberculosis contacts.' American journal of respiratory and critical care medicine 175.6 (2007): 618-627. [87]Kardos, Marisa, and Alexa Boer Kimball. 'Time for a change? Updated guidelines using interferon gamma release assays for detection of latent tuberculosis infection in the office setting.' Journal of the American Academy of Dermatology 66.1 (2012): 148-152. [88]Electrophoretic mobility shift assays 2005 [89]Hellman, Lance M., and Michael G. Fried. 'Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions.' Nature protocols 2.8 (2007): 1849-1861. [90]Laniel, Marc-André, Alain Béliveau, and Sylvain L. Guérin. 'Electrophoretic mobility shift assays for the analysis of DNA-protein interactions.' DNA-Protein Interactions. Humana Press, 2001. 13-30. [91]Alves, Carolina, and Celso Cunha. Electrophoretic Mobility Shift Assay: Analyzing Protein-Nucleic Acid Interactions. INTECH Open Access Publisher, 2012. [92]Fried, Michael G. 'Measurement of protein‐DNA interaction parameters by electrophoresis mobility shift assay.' Electrophoresis 10.5‐6 (1989): 366-376. [93]Hellman, Lance M., and Michael G. Fried. 'Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions.' Nature protocols 2.8 (2007): 1849-1861. [94]Orchard, Kim, and Gillian E. May. 'An EMSA-based method for determining the molecular weight of a protein--DNA complex.' Nucleic acids research 21.14 (1993): 3335. [95]http://mmg-233-2013-genetics-genomics.wikia.com/wiki/EMSA:_Electrophoretic_Mobility_Shift_Assay [96]Towbin, H., T. Stahelen, and J. Gordon. 'Protocols for nucleic acid bloting.'Procedures of the National Academy of Sciences of the USA 76 (1979): 4350-4. [97]Saiki, Randall K., et al. 'Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.'Science 230.4732 (1985): 1350-1354. [98]Mullis, Kary B., and Fred A. Faloona. 'Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction.' Methods in enzymology 155 (1987): 335. [99]Purves, William K., et al. Life: The Science of Biology: Volume III: Plants and Animals. Vol. 3. Macmillan, 2003. [100]Chien, Alice, David B. Edgar, and John M. Trela. 'Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus.' Journal of bacteriology 127.3 (1976): 1550-1557. [101]Cebula, Thomas A., and Walter H. Koch. 'Polymerase chain reaction (PCR) and its application to mutational analysis.' Progress in clinical and biological research 372 (1990): 255-266. [102]The Analysis of Food Samples for the Presence of Genetically Modified Organisms Session 6 The Polymerase Chain Reaction (PCR) [103]Smith, Cindy J., and A. Mark Osborn. 'Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.' FEMS microbiology ecology 67.1 (2009): 6-20. [104]Lin, Robert, et al. 'A lateral electrophoretic flow diagnostic assay.' Lab on a Chip 15.6 (2015): 1488-1496. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51462 | - |
dc.description.abstract | 儘管現今疾病醫療如此進步,藥物的篩檢仍是一費時且漫長的工程,為了提升心臟毒性藥物篩檢之效率,開發一種以壓電為基礎之體外仿生心臟晶片為本研究之主要構想,利用壓電的力電轉換特性電特性,做為即時檢測晶片之優勢,將可應用於動物臨床測試中之快速藥物篩檢,以大幅提升篩檢速率。本研究以壓電高分子聚合物(PVDF、P(VDF-TrFE))之柔性壓電材料做為此晶片薄膜研發之材料,以三維立體結構之微懸臂樑做為其薄膜之結構開發設計,並依心肌細胞之尺度及培養環境需求,研發出低成本壓電薄膜之微機電製程技術。
此外,隨著疾病預防觀念之普及,各類型之檢測需求及其檢測之精準度大幅增加。近年來研究發現,適體(Aptamer)可與大部份分子形成專一性結合之特性、並具有相當之穩定性、以及低成本之可大量製造之優勢,足以做為分子檢測之應用。本研究利用膠體電泳之電泳遷移率分析(EMSA)證實其適體做為分子檢測方法之可行性,且透過自製晶片之設計與機電整合技術研發一微電泳膠體系統,配合即時定量聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction, qPCR),進一步證實其自製分子檢測晶片之微電泳膠體系統以達到可定性分子之晶片檢測能力,在某程度上具備有一個次級之定量解析能力,顯示其適體檢測方法與晶片未來之可定量分析潛能。 | zh_TW |
dc.description.abstract | Despite the advances in medical diseases today, drugs screening is still a time-consuming and lengthy process. In order to enhance the efficiency of drug screening for cardiotoxin detection, developing a biomimetic heart on a chip based on piezoelectricity is the major goal of this study. The advantage of using piezoelectric material is its electro-mechanical coupling effect that can provide a real-time signal for monitoring cardiac activities. Furthermore, having an automatic in vitro biomimetic heart on chip system could potentially enhance the drugs screening process during the drug development. In this study, a piezoelectric polymer (PVDF or P(VDF-TrFE)) is used to serve as the flexible structure of the chip. To fit the culture of a single or several myocardial cells, a low cost microfabrication process of a piezoelectric thin-film was developed in this study. Developed process and experimental results will be presented in this thesis.
On the other hand, a new methods based-on Aptamer for molecules detection is developed in this srudy. It provides excellent specificity for a large populations of molecules. Further, the production of aptamer is low-cost and stable. Researches have shown that aptamer is a good candidate for future molecular detection methods. In this study, we apply electrophoretic mobility electrophoresis analysis (EMSA) to demonstrate the feasibility of using aptamer for molecular detection. A miniature electrophoresis device was developed for verification of this concept. The real-time quantitative polymerase chain reaction (qPCR) is used to analyze the quantity of detected molecules. It was confirmed that using aptamer to detect molecular is feasible and could potentially provide quantified information. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:35:06Z (GMT). No. of bitstreams: 1 ntu-105-R02543020-1.pdf: 9156335 bytes, checksum: 663dee839afe4edd9c5d9b1dcd148ad0 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.2.1 仿生心臟晶片之壓電系統製程開發 2 1.2.2 DNA適體分子檢測晶片之研發 3 1.3 文獻回顧 4 1.3.1 仿生心臟晶片之發展 4 1.3.2 壓電材料現今應用及技術 9 1.3.3 分子檢測的技術的發展 13 1.4 研究方法 17 1.4.1 仿生心臟晶片之壓電系統製程開發 17 1.4.2 DNA適體分子檢測晶片之研發 17 1.5 論文架構 17 第二章 仿生心臟晶片之設計理念 19 2.1 心肌細胞的種類、特徵與特性介紹 19 2.2 微奈米結構設計與製程介紹 20 2.3 壓電系統材料與特性 24 2.3.1 壓電基本性質與壓電效應 24 2.3.2 壓電材料種類與性質比較 26 2.3.3 壓電之高分子聚合物 27 2.3.4 壓電聚合物之製程方法與限制 30 第三章 壓電薄膜製程開發 34 3.1 結構製程設計與材料選擇 34 3.1.1 光罩設計與尺寸 35 3.1.2 製程開發_已極化之9μm PVDF壓電薄膜 36 3.1.3 製程開發_聚氟乙烯 - 三氟乙烯共聚物P(VDF-TrFE)薄膜 39 3.2 光刻製程(PHOTOLITHOGRAPHY) 44 3.2.1 光刻技術步驟 44 3.2.2 正負光阻及圖案定義 46 3.2.3 曝光對準設備 48 3.2.4 低溫黃光製程研發 48 3.3 金屬蒸鍍及掀舉(LIFT-OFF) 50 3.3.1 電子束蒸鍍(E-beam)之鈦金屬薄膜表面探討 50 3.3.2 Lift-off 54 3.4 蝕刻(ETCHING) 57 3.4.1 鎳銅電極蝕刻 58 3.4.2 PVDF蝕刻 59 第四章 仿生壓電薄膜製程最佳化設計 62 4.1 自製 P(VDF-TRFE)製程總流程 62 4.2 光罩設計與尺寸 64 4.3 SU-8光阻層 65 4.4 改進之濕蝕刻製程 68 4.5 空氣電離子槍(AIR JET)之應用 70 第五章 DNA適體分子檢測晶片之研發設計理念 76 5.1 晶片之設計理念 76 5.1.1 DNA適體之分子檢測方法 76 5.1.2 結核菌感染檢測之晶片研發 78 5.1.3 適體設計與IFN-γ結合 79 5.2 膠體電泳介紹 80 5.2.1 原理與特性 80 5.2.2 電泳遷移率變動分析之應用 82 5.2.3 電泳結果之分析方法 82 5.3 即時定量聚合酶鏈鎖反應(QUANTITATIVE REAL TIME POLYMERASE CHAIN REACTION, QPCR) 83 5.3.1 PCR發展與應用 83 5.3.2 PCR基本原理流程與種類 84 5.3.3 qPCR原理 86 5.3.4 qPCR之絕對定量曲線分析 90 5.4 適體晶片系統架構設計與檢測開發 91 第六章 DNA適體分子檢測應證 93 6.1 實驗設備與材料配置參數 93 6.2 實驗步驟 95 6.3 結果與分析(理論證實) 97 6.3.1 適體(Aptamer)與蛋白(IfN-γ)之監測方法 97 6.3.2 螢光標定之電泳遷移率變動分析結果應證 98 6.3.3 最佳化結果分析與應用 100 第七章 自製DNA適體晶片開發 103 7.1 適體晶片材料與系統設計 103 7.1.1 總裝置設計 103 7.1.2 晶片裝置製造與加工 104 7.1.3 實驗設計 105 7.2 適體晶片系統之研發 107 7.2.1 芯片流道設計改良 107 7.2.2 膠體流道製作方法演進 109 7.2.1 111 7.2.2 111 7.2.3 晶片電極材料更換與電壓控制 111 7.2.4 改良之實驗設計 112 7.3 電泳遷移率之結果分析 112 7.3.1 單一電泳分析結果 112 7.3.2 平行電泳分析結果 114 7.4 QPCR結果與定量濃度分析 115 第八章 結論 120 8.1 仿生心臟晶片之壓電系統製程開發 120 8.2 DNA適體分子檢測晶片之研發 120 第九章 參考文獻 121 附錄 127 | |
dc.language.iso | zh-TW | |
dc.title | 仿生心臟晶片之壓電系統製程開發及適體分子檢測晶片之研發 | zh_TW |
dc.title | Development of a piezoelectric microsystem for biomimetic heart on a chip and an aptamer-based gel electrophoresis chip for molecular detection | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 許聿翔(Yu-Hsiang Hsu) | |
dc.contributor.oralexamcommittee | 周涵怡(Han-Yi, Chou),陳奕帆(Yih-Fan Chen),張家歐(Chia-Ou Chang) | |
dc.subject.keyword | 壓電高分子聚合物,PVDF,P(VDF-TrFE),適體,電泳遷移率分析, | zh_TW |
dc.subject.keyword | PVDF,P(VDF-TrFE),Aptamer,EMSA,qPCR, | en |
dc.relation.page | 127 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 8.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。