Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51459
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃燦輝
dc.contributor.authorChia-Chi Chiuen
dc.contributor.author邱家吉zh_TW
dc.date.accessioned2021-06-15T13:34:59Z-
dc.date.available2017-02-15
dc.date.copyright2016-02-15
dc.date.issued2016
dc.date.submitted2016-01-29
dc.identifier.citation[1] Reik G, Zacas M. Strength and deformation characteristics of jointed media in true triaxial compression. Int J Rock Mech Min. 1978;15:295-303.
[2] Yoshinaka R, Yamabe T. Joint Stiffness and the Deformation Behaviour of Discontinuous Rock. Int J Rock Mech Min. 1986;23:19-28.
[3] Tang CA, Yang WT, Fu YF, Xu XH. A new approach to numerical method of modelling geological processes and rock engineering problems-continuum to discontinuum and linearity to nonlinearity. Engineering Geology. 1998;49:207-14.
[4] Jaeger JC. Shear failure of anisotropic rocks. Geological Magazine. 1960;97:65-72.
[5] McLamore RT. Strength-deformation characteristics of anisotropic sedimentary rocks: University of Texas; 1966.
[6] Bray J. Study of Jointed and Fractured Rock. Jour of Intl Soc of Rock Mech. 1967;5:117-36.
[7] Hoek E, Diederichs MS. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences. 2006;43:203-15.
[8] Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown criterion – 2002 edition. NARMS-TAC. Toronto2002. p. 267-73.
[9] Hoek E. Strength of rock and rock masses. ‘94 Rock Engineering Symposium. Taiwan, Chungli1994. p. A1-A19.
[10] Hoek E. Strength of jointed rock masses. Géotechnique. 1983;33:187-223.
[11] Hoek E, Brown ET. Empirical strength criterion for rock masses. Journal of Geotechnical Engineering Div ASCE. 1980;106:1013-35.
[12] Singh B. Continuum characterization of jointed rock masses: Part I-the constitutive equations. Int J Rock Mech Min. 1973;10:311-35.
[13] Amadei B, Goodman RE. A 3-D constitutive relation for fractured rock masses. Proceedings of the International Symposium
on the Mechanical Behavior of Structured Media. Ottawa1981. p. 249-68.
[14] Wang TT, Huang TH. A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. International Journal of Rock Mechanics and Mining Sciences. 2009;46:521-30.
[15] Potyondy DO, Cundall PA. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences. 2004;41:1329-64.
[16] Cho N, Martin CD, Sego DC. A Clumped Particle Model for Rock. International Journal of Rock Mechanics and Mining Sciences. 2007;44:997-1010.
[17] Potyondy DO. A Grain-Based Model for Rock: Approaching the True Microstructure. Proceedings of Rock Mechanics in the Nordic Countries 2010. Kongsberg, Norway2010. p. 225-34.
[18] Mas Ivars D, Pierce ME, Darcel C, Reyes-Montes J, Potyondy DO, Paul Young R, et al. The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences. 2011;48:219-44.
[19] O'Sullivan C. Particulate Discrete Element Modelling: A Geomechanics Perspective: Spon Press/Taylor & Francis; 2011.
[20] Akram MS, Sharrock GB. Physical and numerical investigation of a cemented granular assembly of steel spheres. International Journal for Numerical and Analytical Methods in Geomechanics. 2010;34:1896-934.
[21] Dvorkin J, Mavko G, Nur A. The Effect of Cementation on the Elastic Properties of Granular Material. Mechanics of Materials. 1991;12:207-17.
[22] Chiu C-C, Weng M-C, Huang T-H. Biconcave Shape Bond Model For Rock Deformation. International Society for Rock Mechanics congress 2015. Quebec, Canada. p. #176.
[23] SIMULIA. http://www.itascacg.com/; 2015.
[24] ItascaConsultingGroup. http://www.itascacg.com/; 2015.
[25] Zhang Q, Zhu H, Zhang L, Ding X. Study of scale effect on intact rock strength using particle flow modeling. International Journal of Rock Mechanics and Mining Sciences. 2011;48:1320-8.
[26] Chiu CC, Wang TT, Weng MC, Huang TH. Modeling the anisotropic behavior of jointed rock mass using a modified smooth-joint model. International Journal of Rock Mechanics and Mining Sciences. 2013;62:14-22.
[27] Hsieh YM, Li HH, Huang TH, Jeng FS. Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties-Revealed by bonded-particle model. Engineering Geology. 2008;99:1-10.
[28] Weng MC, Li HH. Relationship between the deformation characteristics and microscopic properties of sandstone explored by the bonded-particle model. International Journal of Rock Mechanics and Mining Sciences. 2012;56:34-43.
[29] Patton FD. Multiple Modes of Shear Failure In Rock. International Society for Rock Mechanics.
[30] Ladanyi B, Archambault G. Simulation Of Shear Behavior of a Jointed Rock Mass. American Rock Mechanics Association.
[31] Saeb S, Amadei B. Modelling rock joints under shear and normal loading. Int J Rock Mech Min. 1992;29:267-78.
[32] Barton N. Review of a new shear-strength criterion for rock joints. Engineering Geology. 1973;7:287-332.
[33] Yang ZY, Chen JM, Huang TH. Effect of Joint Sets on the Strength and Deformation of Rock Mass Models. International Journal of Rock Mechanics and Mining Sciences. 1998;35:75-84.
[34] Park J-W, Song J-J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. International Journal of Rock Mechanics and Mining Sciences. 2009;46:1315-28.
[35] Zhang G, Karakus M, Tang H, Ge Y, Zhang L. A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses. International Journal of Rock Mechanics and Mining Sciences. 2014;72:191-8.
[36] Cundall PA. Numerical experiments on rough joints in shear using a bonded particle model. Aspects of tectonic faulting. 1999:1-9.
[37] Cundall P. Numerical experiments on rough joints in shear using a bonded particle model. In: Lehner F, Urai J, editors. Aspects of Tectonic Faulting: Springer Berlin Heidelberg; 2000. p. 1-9.
[38] Barton N, Choubey V. The shear strength of rock joints in theory and practice. Rock mechanics. 1977;10:1-54.
[39] Bahaaddini M, Sharrock G, Hebblewhite BK. Numerical direct shear tests to model the shear behaviour of rock joints. Computers and Geotechnics. 2013;51:101-15.
[40] Kulatilake PHSW, Malama B, Wang J. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading. International Journal of Rock Mechanics and Mining Sciences. 2001;38:641-57.
[41] Vallejos JA, Suzuki K, Brzovic A, Ivars DM. Application of Synthetic Rock Mass modeling to veined core-size samples. International Journal of Rock Mechanics and Mining Sciences. 2016;81:47-61.
[42] Hertz H. Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte. 1882:156 - 71.
[43] Jager J. Elastic contact of equal spheres under oblique forces. Archive of Applied Mechanics. 1993;63:402-12.
[44] Mindlin RD, Deresiewicz H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics. 1953;20:327-44.
[45] An B. A Study of Energy Loss During Rock Impact Using PFC2D: University of Alberta; 2006.
[46] Thakur SC, Morrissey JP, Sun J, Chen JF, Ooi JY. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granular Matter. 2014;16:383-400.
[47] ItascaConsultingGroup. PFC2D (Particle Flow Code in 2 Dimensions) Version 4.0. Minneapolis, MN: ICG; 2015.
[48] Johnson KL. Contact Mechanics1985.
[49] Brown NJ, Chen JF, Ooi JY. A bond model for DEM simulation of cementitious materials and deformable structures. Granular Matter. 2014;16:299-311.
[50] Delenne J-Y, El Youssoufi MS, Cherblanc F, Bènet J-C. Mechanical behaviour and failure of cohesive granular materials. International Journal for Numerical and Analytical Methods in Geomechanics. 2004;28:1577-94.
[51] Jiang MJ, Zhu HH. An interpretation of the internal length in Chang’s couple-stress continuum for bonded granulates. Granular Matter. 2007;9:431-7.
[52] Jiang MJ, Shen ZF, Wang JF. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Computers and Geotechnics. 2015;65:147-63.
[53] Obermayr M, Dressler K, Vrettos C, Eberhard P. A bonded-particle model for cemented sand. Computers and Geotechnics. 2013;49:299-313.
[54] Leurer KC, Dvorkin J. Viscoelasticity of precompacted unconsolidated sand with viscous cement. Geophysics. 2006;71:T31-T40.
[55] Dvorkin J, Yaleb D. Plastic Compaction of Cemented Granular Materials. Computers and Geotechnics. 1997;20:287-302.
[56] Dvorkin J. Large strains in cemented granular aggregates: Elastic-plastic cement. Mechanics of Materials. 1996;23:29-44.
[57] Dvorkin J, Yin HZ. Contact Laws for Cemented Grains - Implications for Grain and Cement Failure. Int J Solids Struct. 1995;32:2497-510.
[58] Dvorkin J, Nur A, Yin H. Effective properties of cemented granular materials. Mechanics of Materials. 1994;18:351-66.
[59] Zhu H, Chang CS, Lou KA. 2-D Normal compliances for elastic and visco-elastic binder contact with finite particle size effect. Int J Solids Struct. 2000;37:7703-16.
[60] Zhu H, Chang CS, III JWR. Normal and tangential compliance for conforming binder contact I : elastic binder. International Journal of Solids Strucrures. 1996;33:4337-49.
[61] Gladkyy A, Schwarze R. Comparison of different capillary bridge models for application in the discrete element method. Granular Matter. 2014;16:911-20.
[62] Mielniczuk B, Hueckel T, Youssoufi M. Evaporation-induced evolution of the capillary force between two grains. Granular Matter. 2014:1-14.
[63] Cundall PA. A computer model for simulating progressive, large-scale movements in blocky rock systems. Proceedings of the Symposium of the International Society of Rock Mechanics. Nancy, France1971. p. 129-36.
[64] Cundall PA, Strack OD. A Discrete Numerical Model for Granular Assemblies. Géotechnique. 1979;29:47-65.
[65] Shi GH. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structureS. Engineering Computations. 1992;9:157-68.
[66] DEMsolutions. http://www.dem-solutions.com/; 2015.
[67] VEDO. https://sites.google.com/a/caece.net/vedo/; 2015.
[68] YADE. https://yade-dem.org/doc/; 2015.
[69] Bandis SC, Lumsden AC, Barton NR. Fundamentals of rock joint deformation. Int J Rock Mech Min. 1983;20:249-68.
[70] 楊長義. 模擬規則節理岩體強度與變形性之研究 [博士論文]. 台北市: 國立臺灣大學; 1992.
[71] Barton N. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering. 2013;5:249-61.
[72] Barton N, Bandis S, Bakhtar K. Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min. 1985;22:121-40.
[73] Hadjigeorgiou J, Esmaieli K, Grenon M. Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model. Tunnelling and Underground Space Technology. 2009;24:296-308.
[74] 蔡承翰. 膠結顆粒材料之變形特性研究 [碩士論文]. 高雄市: 國立高雄大學; 2015.
[75] Deere DU. Geological Considerations. In: R.G.Stagg, D.C.Zienkiewicz, editors. Rock Mechanics in Engineering Practice. London: John Wiley & Sons; 1968. p. 1-20.
[76] Rosso RS. A comparison of joint stiffness measurements in direct shear, triaxial compression, and In Situ. Int J Rock Mech Min. 1976;13:167-72.
[77] Ji Y, Hall SA, Baud P, Wong Tf. Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation. Geophysical Journal International. 2015;200:699-717.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51459-
dc.description.abstract節理岩體由岩石材料(岩材)與節理面組成,其力學行為受岩材破壞與節理面滑動的影響而呈現非線性與異向性之特性,尤其是岩材中局部的微小破裂與節理面剪動時節瘤的破斷,對整體的受力行為影響甚鉅。因此,基於微觀角度,採用非連續體分析-個別元素法-探討岩體力學行為是有效的研究途徑與重要課題。然而目前岩石力學領域最廣泛應用的個別元素分析軟體-PFC中,對於描述岩材顆粒膠結之「平行鍵結模式」以及節理面滑動的「平滑節理模式」皆未臻完善,無法適當呈現節理岩體力學行為,致使模擬可信度不佳。據此,本研究以個別元素法PFC2D軟體作為模擬節理岩體的主軸,自微觀角度出發,分別改善岩石材料及節理面力學行為之模擬方式,並將之耦合,進而提出更可靠之節理岩體力學行為數值模式。
在節理面力學行為模擬的改良方面,本研究以Barton剪力強度模式做為模擬之力學基準,將節理面的粗糙度特性納入考量,使其可反映粗糙度及節瘤造成的影響,同時針對個別元素法於模擬節理面時之缺失進行改良,分別進行以下修正:(1)節理面接觸面積之剪力勁度修正;(2)節理面剪動狀態之剪力勁度修正;(3)漏失剪力增量之補償及(4)正向力之重新分配。透過上述修正,本研究提出可精準描述Barton剪力強度模式之個別元素法節理面模式-「粗糙節理模式」。
在岩材力學行為模擬的改良方面,透過觀察岩石薄片的微觀組構,本研究假設岩材為不同尺寸顆粒聚合而成之材料,且顆粒間膠結近似於雙凹形狀;以此為基礎,經由Dvorkin理論之彈性解,及本研究提出之三項修正方式:(1)運移拆解;(2)應力調整及(3)演算改良,藉由一系列不同幾何形狀的顆粒膠結彈性分析,可探討其在壓力、張力、剪力及彎矩作用下微觀的力學行為,進而發展能合理描述岩材微觀性質的「雙凹鍵結模式」。
最後,本研究結合「粗糙節理模式」與「雙凹鍵結模式」,提出具有微觀力學理論基礎的「節理岩體微觀力學模式」,可藉由節理面及岩石材料之微觀參數完整描述節理岩體的巨觀力學行為,並能觀察其受力時岩材局部破裂及節理面節瘤破壞等微觀演變過程。
zh_TW
dc.description.abstractThe mechanical behaviors of jointed rock masses are affected by rock material failure and joint surface sliding, showing nonlinear and anisotropic characteristics. Among the influencing factors of rock mass mechanical behaviors, the micro-cracks in rock materials and asperity ruptures under joint shearing are two major factors. Therefore, it is important to investigate the mechanical behaviors of jointed rock masses from microscopic perspective using discontinuum analysis – distinct element method. However, in the widely-used software distinct element method –Particle Flow Code (PFC), the “parallel bond model” designed to describe grain cementation and the “smooth-joint model” to handle joint surface sliding are too simplified and unreliable to represent the mechanical behaviors of rock mass appropriately. Thus, this study used PFC as the main subject to simulate jointed rock masses, to improve the simulation of mechanical behavior of rock material and joint surface in microscopic behavior. Finally, this study proposed a more reliable numerical model of jointed rock mass.
To improve mechanical behavior of joint plane, this study considered the characteristics of joint roughness and used Barton’s shear strength model as the basis of mechanism in, thus it can reflect the influence of roughness and asperities. On the other hand, the limits of distinct element method has been ameliorated, and following modification has been adopted: (1)The modification of shear stiffness based on joint contact area; (2)The modification of shear stiffness based on joint sliding state; (3)The compensation of shear force increment and (4)The redistribution of normal force. Based on above modifications, this study proposed a joint model in PFC – rough-joint model – which can reflect Barton’s shear strength criterion precisely.
To improve mechanical behavior of rock material, this study assumes a rock material is composed of particles with different sizes based on the observation of rock thin section, and the shape of cement between particles can be treated as biconcave shape. Based on this assumption, from the elastic solution of Dvorkin theory and three modifications proposed by this study: (1)Motion decomposition (2)Stress redistribution and (3)Algorithm improvement, the mechanical behavior of biconcave shape bond can be described by a series of particle-cementation analysis with different geometries under compression, tension, shearing and bending situations, agree well with the proposed “biconcave bond model”.
Finally, this study combined the “rough-joint model” and the “biconcave bond model” to propose a “jointed rock masses microscopic mechanical model” that is able to well describe the macroscopic mechanical behaviors of jointed rock masses based on the micro parameters of joint surface and rock material, and to observe the microscopic evolutions such as local cracks in rock material and asperity ruptures in joint surface during loading.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:34:59Z (GMT). No. of bitstreams: 1
ntu-105-D99521003-1.pdf: 11786480 bytes, checksum: e09ca9b8f359085532a384e4257c97c3 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 I
誌 謝 II
摘 要 IV
Abstract V
目錄 VII
圖目錄 XII
表目錄 XVIII
符號說明 XIX
第一章 導論 1
1.1 研究背景與目的 1
1.2 研究方法與內容 3
第二章 前人研究 7
2.1 節理岩體力學行為、相關力學理論及數值模式 7
2.1.1 岩石材料力學行為 7
2.1.2 節理面力學行為 12
2.1.3 節理岩體力學行為 18
2.2 顆粒材料接觸模式 22
2.2.1 顆粒碰撞行為 22
2.2.2 顆粒膠結行為 23
第三章 離散元素法之理論基礎 29
3.1 離散元素法 29
3.1.1 離散元素法之應用 29
3.1.2 離散元素法之種類 30
3.2 分析軟體–個別元素法PFC2D程式概述 30
3.2.1 PFC2D之分析優勢 30
3.2.2 PFC2D基本假設與運算原理 31
3.3 PFC2D內建之接觸模式介紹 39
3.3.1 勁度(Stiffness) 39
3.3.2 滑動(Slip) 41
3.3.3 鍵結行為(Bonding behaviors) 42
第四章 粗糙節理模式之建構 44
4.1 粗糙節理模式之力學理論基礎 44
4.1.1 剪力強度破壞準則 45
4.1.2 剪力變形曲線 46
4.1.3 閉合曲線 49
4.1.4 剪脹曲線 50
4.2 平滑節理模式(Smooth – joint model) 51
4.3 平滑節理模式之限制 53
4.4 粗糙節理模式(Rough – joint model) 56
4.4.1 小變形模式與大變形模式 56
4.4.2 剪力強度準則 57
4.4.3 剪力變形曲線 58
4.4.4 閉合曲線 66
4.4.5 剪脹曲線 67
4.4.6 粗糙節理模式之運算流程 69
4.5 粗糙節理模式於不同正向應力之模擬結果 70
4.5.1 直剪試驗模擬之模型設定 70
4.5.2 剪力強度準則 73
4.5.3 剪力變形曲線 73
4.5.4 閉合曲線 74
4.5.5 剪脹曲線 75
4.6 不同修正方式對節理面力學行為之影響 76
4.6.1 直剪試驗模擬之模型設定 76
4.6.2 剪力強度準則 77
4.6.3 剪力變形曲線 77
4.6.4 閉合曲線 81
4.6.5 剪脹曲線 82
4.7 粗糙節理模式於不同顆粒半徑之模擬結果 83
4.7.1 直剪試驗模擬之模型設定 83
4.7.2 剪力強度準則 84
4.7.3 剪力變形曲線 84
4.7.4 閉合曲線 85
4.7.5 剪脹曲線 86
4.7.6 粗糙節理模式於不同顆粒半徑之適用性 87
第五章 雙凹鍵結模式之建構 88
5.1 雙凹形狀膠結之幾何定義及數值彈性解 88
5.1.1 雙凹形狀膠結之幾何定義 88
5.1.2 雙凹形狀膠結之數值彈性解 90
5.2 Dvorkin膠結模式 91
5.2.1 Dvorkin模式之假設與邊界條件 92
5.2.2 Dvorkin模式求解過程 93
5.2.3 Dvorkin模式之理論限制 95
5.2.4 Dvorkin模式運用於個別元素法PFC2D之考量 96
5.3 雙凹鍵結模式 97
5.3.1 基本假設 98
5.3.2 運移拆解 98
5.3.3 應力調整 102
5.3.4 演算改良 103
5.3.5 五點破壞準則 106
5.4 模式驗證:單一膠結 106
5.4.1 雙凹鍵結模式之應力分布正確性 106
5.4.2 雙凹鍵結模式於PFC2D之呈現結果 108
5.4.3 雙凹鍵結模式解算節點數量之影響 110
5.4.4 雙凹鍵結模式與既有模式之差異 112
5.5 模式驗證:規則膠結鋁棒 115
5.6 微觀參數對單一鍵結力學行為之影響 120
5.6.1 膠結材料變形性對單一鍵結勁度之影響 120
5.6.2 膠結幾何形狀對單一鍵結勁度之影響 121
5.7 微觀參數對巨觀力學行為之影響 124
5.7.1 楊氏模數 125
5.7.2 柏松比 127
5.7.3 摩擦係數 129
5.7.4 鍵結強度比 131
5.7.5 顆粒尺寸 133
5.7.6 膠結厚度 135
5.7.7 膠結寬度 137
第六章 節理岩體微觀力學模式之應用 139
6.1 模擬對象 139
6.2 節理面力學行為之模擬 140
6.2.1 參數設置及模型建構 140
6.2.2 模擬結果 141
6.3 岩石材料力學行為之模擬 144
6.3.1 參數設置及模型建構 144
6.3.2 模擬結果 146
6.4 節理岩體力學行為之模擬 149
6.4.1 參數設置及模型建構 150
6.4.2 模擬結果 152
第七章 結論與建議 160
7.1 結論 160
7.1.1 粗糙節理模式 160
7.1.2 雙凹鍵結模式 161
7.1.3 節理岩體微觀力學模式 161
7.2 建議 162
參考文獻 164
附 錄 A-1
附錄A Abaqus數值彈性解之應力場分布 A-1
附錄B Dvorkin簡化彈性解之應力場分布 B-1
附錄C 雙凹鍵結模式之應力場分布 C-1
附錄D 上部顆粒旋轉量與表面變形量關係之推導 D-1
附錄E 演算改良之計算效率驗證 E-1
附錄F 雙凹鍵結模式數值解算過程 F-1
附錄G 常微分方程式之邊界值問題有限差分解法 G-1
附錄H 博士學位考試口試委員提問與回覆對照表 H-1
dc.language.isozh-TW
dc.subject離散元素法zh_TW
dc.subject個別元素法zh_TW
dc.subject節理岩體zh_TW
dc.subject岩石材料zh_TW
dc.subject節理面zh_TW
dc.subject離散元素法zh_TW
dc.subject個別元素法zh_TW
dc.subject節理岩體zh_TW
dc.subject節理面zh_TW
dc.subject岩石材料zh_TW
dc.subjectJoint surfaceen
dc.subjectRock materialen
dc.subjectJointed rock massesen
dc.subjectDistinct element method - Particle flow code (PFC)en
dc.subjectDiscrete element method (DEM)en
dc.subjectJoint surfaceen
dc.subjectRock materialen
dc.subjectJointed rock massesen
dc.subjectDistinct element method - Particle flow code (PFC)en
dc.subjectDiscrete element method (DEM)en
dc.title節理岩體微觀力學模式之研究zh_TW
dc.titleA Study on the Micromechanical Model of Jointed Rock Massesen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳堯中,壽克堅,翁孟嘉,王泰典,鄭富書
dc.subject.keyword節理面,岩石材料,節理岩體,個別元素法,離散元素法,zh_TW
dc.subject.keywordJoint surface,Rock material,Jointed rock masses,Distinct element method - Particle flow code (PFC),Discrete element method (DEM),en
dc.relation.page201
dc.rights.note有償授權
dc.date.accepted2016-01-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
11.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved