請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51458
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
dc.contributor.author | Yu-Ting Tsai | en |
dc.contributor.author | 蔡宇庭 | zh_TW |
dc.date.accessioned | 2021-06-15T13:34:57Z | - |
dc.date.available | 2021-02-16 | |
dc.date.copyright | 2016-02-16 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-29 | |
dc.identifier.citation | [1] H.K.D.H. Bhadeshia, 'Some phase transformations in steels,' Mater. Sci. Technol., 15 (1999) 22-29.
[2] P.M. Kelly, J. Nutting, 'The martensite transformation in carbon steels,' Proc. R. Soc. A, 259 (1960) 45-58. [3] H.K.D.H. Bhadeshia, 'Diffusional formation of ferrite in iron and its alloys,' Prog. Mater. Sci., 29 (1985) 321-386. [4] T. Yokomizo, M. Enomoto, O. Umezawa, G. Spanos, R.O. Rosenberg, 'Three-dimensional distribution, morphology, and nucleation site of intragranular ferrite formed in association with inclusions,' Mater. Sci. Eng. A, 344 (2003) 261-267. [5] A.D. King, T. Bell, 'Crystallography of grain-boundary proeutectoid ferrite,' Metall. Mater. Trans. A, 6 (1975) 1419-1429. [6] H. Guo, X. Gao, Y. Bai, M. Enomoto, S. Yang, X. He, 'Variant selection of bainite on the surface of allotriomorphic ferrite in a low carbon steel,' Mater. Charact., 67 (2012) 34-40. [7] Y.T. Chi, Y.T. Tsai, B.M. Huang, J.R.Yang, Internal Rep. [8] C. Capdevila, F.G. Caballero, C. Garcia-Mateo, C.G. de Andres, 'The role of inclusions and austenite grain size on intragranular nucleation of ferrite in medium carbon microalloyed steels,' Mater. Trans., 45 (2004) 2678-2685. [9] G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, R. Uemori, 'Crystallography of intragranular ferrite formed on (MnS + V(C, N)) complex precipitate in austenite,' Scripta Mater., 48 (2003) 371-377. [10] T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, T. Maki, 'Multiphase crystallography in the nucleation of intragranular ferrite on mns plus V(C, N) complex precipitate in austenite,' ISIJ Int., 43 (2003) 2028-2037. [11] J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, D.N. Lee, 'Ferrite nucleation potency of non-metallic inclusions in medium carbon steels,' Acta Mater., 49 (2001) 2115-2122. [12] M.-Y. Chen, H.-W. Yen, J.-R. Yang, 'The transition from interphase-precipitated carbides to fibrous carbides in a vanadium-containing medium-carbon steel,' Scripta Mater., 68 (2013) 829-832. [13] D.E. Coates, 'Diffusion-controlled precipitate growth in ternary systems I,' Metall. Mater. Trans. A, 3 (1972) 1203-1212. [14] M. Hillert, 'Nature of massive transformation,' Metall. Mater. Trans. A, 35 (2004) 351-352. [15] Y.T.Tsai, J.R.Yang, Internal Rep. [16] R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, PWS-Kent Pub., Boston, 1992. [17] M. Hillert, L. Hoglund, J. Agren, 'Role of carbon and alloying elements in the formation of bainitic ferrite,' Metall. Mater. Trans. A, 35A (2004) 3693-3700. [18] A. Borgenstam, M. Hillert, J. Ågren, 'Metallographic evidence of carbon diffusion in the growth of bainite,' Acta Mater., 57 (2009) 3242-3252. [19] H.K.D.H. Bhadeshia, 'A personal commentary on 'transformation of austenite at constant subcritical temperatures',' Metall. Mater. Trans. A, 41A (2010) 1351-1352. [20] R.F. Hehemann, K.R. Kinsman, H.I. Aaronson, 'Debate on bainite reaction,' Metall. Mater. Trans. A, 3 (1972) 1077-&. [21] H.I. Aaronson, W.T. Reynolds, G.J. Shiflet, G. Spanos, 'Bainite viewed 3 different ways,' Metall. Mater. Trans. A, 21 (1990) 1343-1380. [22] M. Hillert, A. Borgenstam, J. Agren, 'Do bainitic and widmanstatten ferrite grow with different mechanisms?,' Scripta Mater., 62 (2010) 75-77. [23] L.C.D. Fielding, 'The bainite controversy,' Mater. Sci. Technol., 29 (2013) 383-399. [24] M. Hillert, 'Diffusion in growth of bainite,' Metall. Mater. Trans. A, 25 (1994) 1957-1966. [25] H.K.D.H. Bhadeshia, 'Carbon in cubic and tetragonal ferrite,' Philos. Mag., 93 (2013) 3714-3725. [26] C.N. Hulme-Smith, M.J. Peet, I. Lonardelli, A.C. Dippel, H. Bhadeshia, 'Further evidence of tetragonality in bainitic ferrite,' Mater. Sci. Technol., 31 (2015) 254-256. [27] C. Garcia-Mateo, J.A. Jimenez, H.W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.R. Yang, F.G. Caballero, 'Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality,' Acta Mater., 91 (2015) 162-173. [28] F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide, 'New experimental evidence of the diffusionless transformation nature of bainite,' J. Alloy Compd., 577 (2013) S626-S630. [29] F.G. Caballero, M.K. Miller, C. Garcia-Mateo, 'Carbon supersaturation of ferrite in a nanocrystalline bainitic steel,' Acta Mater., 58 (2010) 2338-2343. [30] F.G. Caballero, M.K. Miller, C. Garcia-Mateo, 'Tracking solute atoms during bainite reaction in a nanocrystalline steel,' Mater. Sci. Technol., 26 (2010) 889-898. [31] F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, C.G. de Andres, 'New experimental evidence on the incomplete transformation phenomenon in steel,' Acta Mater., 57 (2009) 8-17. [32] F.G. Caballero, M.K. Miller, S.S. Babu, C. Garcia-Mateo, 'Atomic scale observations of bainite transformation in a high carbon high silicon steel,' Acta Mater., 55 (2007) 381-390. [33] S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, H. Bhadeshia, 'In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite,' Metall. Mater. Trans. A, 36A (2005) 3281-3289. [34] A. Ali, H. Bhadeshia, 'Growth-rate data on bainite in alloy-steels,' Mater. Sci. Technol., 5 (1989) 398-402. [35] M.X. Zhang, P.M. Kelly, 'Determination of carbon content in bainitic ferrite and carbon distribution in austenite by using CBKLDP,' Mater. Charact., 40 (1998) 159-168. [36] M. Ferrante, R.A. Farrar, 'The role of oxygen rich inclusions in determining the microstructure of weld metal deposits,' J. Mater. Sci., 17 (1982) 3293-3298. [37] S.S. Babu, 'The mechanism of acicular ferrite in weld deposits,' Curr. Opin. Solid State Mater. Sci., 8 (2004) 267-278. [38] J.R. Yang, H. Bhadeshia, 'Acicular ferrite transformation in alloy-steel weld metals,' J. Mater. Sci., 26 (1991) 839-845. [39] J.R. Yang, C.Y. Huang, C.F. Huang, J.N. Aoh, 'Influence of acicular ferrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal,' J. Mater. Sci. Lett., 12 (1993) 1290-1293. [40] J.R. Yang, C.C. Yang, C.Y. Huang, 'The coexistence of acicular ferrite and bainite in an alloy-steel weld metal,' J. Mater. Sci. Lett., 11 (1992) 1145-1146. [41] B.P.J. Sandvik, 'The bainite reaction in Fe-Si-C alloys - the primary stage,' Metall. Mater. Trans. A, 13 (1982) 777-787. [42] B.P.J. Sandvik, 'The bainite reaction in Fe-Si-C alloys - the secondary stage,' Metall. Mater. Trans. A, 13 (1982) 789-800. [43] R.A. Farrar, P.L. Harrison, 'Acicular ferrite in carbon-manganese weld metals: An overview,' J. Mater. Sci., 22 (1987) 3812-3820. [44] X.L. Wang, Y.T. Tsai, J.R. Yang, C.J. Shang, X.M. Wang, L.M. Dong, W.W. Yang, 'Investigation of the microstructure and toughness of 550 MPa grade bend pipe,' accepted. [45] T. Maki, S. Shimooka, I. Tamura, 'The ms temperature and morphology of martensite in fe-31 pct ni-0.23 pct c alloy,' Metall. Mater. Trans. A, 2 (1971) 2944-2945. [46] A. Shibata, S. Morito, T. Furuhara, T. Maki, 'Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys,' Acta Mater., 57 (2009) 483-492. [47] G. Krauss, A.R. Marder, 'The morphology of martensite in iron alloys,' Metall. Mater. Trans. A, 2 (1971) 2343-2357. [48] R.G. Davies, C.L. Magee, 'Influence of austenite and martensite strength on martensite morphology,' Metall. Mater. Trans. A, 2 (1971) 1939-1947. [49] M. Umemoto, E. Yoshitake, I. Tamura, 'The morphology of martensite in Fe-C, Fe-Ni-C and Fe-Cr-C alloys,' J. Mater. Sci., 18 (1983) 2893-2904. [50] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A. Borgenstam, 'Effect of carbon content on variant pairing of martensite in Fe–C alloys,' Acta Mater., 60 (2012) 7265-7274. [51] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, 'Crystallographic features of lath martensite in low-carbon steel,' Acta Mater., 54 (2006) 1279-1288. [52] S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, 'The morphology and crystallography of lath martensite in alloy steels,' Acta Mater., 54 (2006) 5323-5331. [53] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, 'The morphology and crystallography of lath martensite in Fe-C alloys,' Acta Mater., 51 (2003) 1789-1799. [54] H.-Y. Lee, H.-W. Yen, H.-T. Chang, J.-R. Yang, 'Substructures of martensite in Fe–1C–17Cr stainless steel,' Scripta Mater., 62 (2010) 670-673. [55] Y.L.Chang, P.Y.Chen, Y.T.Tsai, J.R.Yang, 'Crystallographic analysis of lenticular martensite in Fe-1.0C-17Cr stainless steel by electron backscatter diffraction,' accepted. [56] H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, Y. Minamino, 'Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD,' Mater. Charact., 54 (2005) 378-386. [57] A. Shibata, T. Murakami, S. Morito, T. Furuhara, T. Maki, 'The origin of midrib in lenticular martensite,' Mater. Trans., 49 (2008) 1242-1248. [58] S. Morito, Y. Adachi, T. Ohba, 'Morphology and crystallography of sub-blocks in ultra-low carbon lath martensite steel,' Mater. Trans., 50 (2009) 1919-1923. [59] E. Kozeschnik, H. Bhadeshia, 'Influence of silicon on cementite precipitation in steels,' Mater. Sci. Technol., 24 (2008) 343-347. [60] J.H. Jang, I.G. Kim, H. Bhadeshia, 'Substitutional solution of silicon in cementite: A first-principles study,' Comput. Mater. Sci., 44 (2009) 1319-1326. [61] N. Takayama, G. Miyamoto, T. Furuhara, 'Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel,' Acta Mater., 60 (2012) 2387-2396. [62] B.C. De Cooman, 'Structure-properties relationship in TRIP steels containing carbide-free bainite,' Curr. Opin. Solid State Mater. Sci., 8 (2004) 285-303. [63] J.R. Patel, M. Cohen, 'Criterion for the action of applied stress in the martensitic transformation,' Acta Metall., 1 (1953) 531-538. [64] H. Bhadeshia, 'TRIP-assisted steels?,' ISIJ Int., 42 (2002) 1059-1060. [65] Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii, 'Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction,' Acta Mater., 52 (2004) 5737-5745. [66] O. Muránsky, P. Šittner, J. Zrník, E.C. Oliver, 'In situ neutron diffraction investigation of the collaborative deformation–transformation mechanism in TRIP-assisted steels at room and elevated temperatures,' Acta Mater., 56 (2008) 3367-3379. [67] P.J. Jacques, Q. Furnemont, S. Godet, T. Pardoen, K.T. Conlon, F. Delannay, 'Micromechanical characterisation of TRIP-assisted multiphase steels by in situ neutron diffraction,' Philos. Mag., 86 (2006) 2371-2392. [68] E.C. Oliver, P.J. Withers, M.R. Daymond, S. Ueta, T. Mori, 'Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel,' Appl Phys A, 74 (2002) s1143-s1145. [69] E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, J.P. Wright, S. van der Zwaag, 'In situ synchrotron study on the interplay between martensite formation, texture evolution and load partitioning in low-alloyed TRIP steels,' Mater. Sci. Eng. A, 528 (2011) 6407-6416. [70] P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, F. Delannay, 'Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing,' Acta Mater., 55 (2007) 3681-3693. [71] M.Y. Sherif, C.G. Mateo, T. Sourmail, H. Bhadeshia, 'Stability of retained austenite in TRIP-assisted steels,' Mater. Sci. Technol., 20 (2004) 319-322. [72] A.R. Marder, 'Factors affecting the ductility of dual-phase alloys,' TMS, (1979). [73] E. De Moor, D.K. Matlock, J.G. Speer, M.J. Merwin, 'Austenite stabilization through manganese enrichment,' Scripta Mater., 64 (2011) 185-188. [74] S. Chatterjee, H.S. Wang, J.R. Yang, H. Bhadeshia, 'Mechanical stabilisation of austenite,' Mater. Sci. Technol., 22 (2006) 641-644. [75] P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, 'Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel,' Metall. Mater. Trans. A, 42A (2011) 3691-3702. [76] A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, P. Barges, 'Evolution of microstructure and mechanical properties of medium Mn steels during double annealing,' Mater. Sci. Eng. A, 542 (2012) 31-39. [77] J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, 'Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite,' Scripta Mater., 63 (2010) 815-818. [78] C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, W.Q. Cao, 'Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during art-annealing,' ISIJ Int., 51 (2011) 651-656. [79] W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong, 'Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by art-annealing,' Mater. Sci. Eng. A, 528 (2011) 6661-6666. [80] Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, C.J. Shang, 'Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel,' Mater. Des., 59 (2014) 193-198. [81] M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, J. Sietsma, 'New low carbon Q&P steels containing film-like intercritical ferrite,' Mater. Sci. Eng. A, 527 (2010) 6429-6439. [82] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, 'Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing,' Scripta Mater., 47 (2002) 893-899. [83] H.-W. Yen, S.W. Ooi, M. Eizadjou, A. Breen, C.-Y. Huang, H.K.D.H. Bhadeshia, S.P. Ringer, 'Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels,' Acta Mater., 82 (2015) 100-114. [84] B. De Cooman, P. Gibbs, S. Lee, D. Matlock, 'Transmission electron microscopy analysis of yielding in ultrafine-grained medium Mn transformation-induced plasticity steel,' Metall. Mater. Trans. A, 44 (2013) 2563-2572. [85] D. Suh, J. Ryu, M. Joo, H. Yang, K. Lee, H.K.D.H. Bhadeshia, 'Medium-alloy manganese-rich transformation-induced plasticity steels,' Metall. Mater. Trans. A, 44 (2013) 286-293. [86] S. Matas, R.F. Hehemann, 'Retained austenite and the tempering of martensite,' Nature, 187 (1960) 685-686. [87] J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, 'Carbon partitioning into austenite after martensite transformation,' Acta Mater., 51 (2003) 2611-2622. [88] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, 'Quenching and partitioning martensite - a novel steel heat treatment,' Mater. Sci. Eng. A, 438 (2006) 25-34. [89] G.S. Ansell, S.J. Donachie, R.W. Messler, 'Effect of quench rate on martensitic transformation in Fe-C alloys,' Metall. Mater. Trans. A, 2 (1971) 2443-&. [90] K.W. Andrews, 'Empirical formulae for calculation of some transformation temperatures,' Tetsu-to-Hagané, 203 (1965) 721-&. [91] C.Y. Kung, J.J. Rayment, 'An examination of the validity of existing empirical formulas for the calculation of ms temperature,' Metall. Mater. Trans. A, 13 (1982) 328-331. [92] J.J. Wang, P.J. van der Wolk, S. van der Zwaag, 'Determination of martensite start temperature in engineering steels part i. Empirical relations describing the effect of steel chemistry,' Mater. Trans. JIM, 41 (2000) 761-768. [93] M. Hillert, J. Agren, 'On the definitions of paraequilibrium and orthoequilibrium,' Scripta Mater., 50 (2004) 697-699. [94] M. Hillert, J. Agren, 'Reply to comments on 'on the definition of paraequilibrium and orthoequilibrium',' Scripta Mater., 52 (2005) 87-88. [95] J.G. Speer, D.K. Matlock, B.C. DeCooman, J.G. Schroth, 'Comments on 'on the definitions of paraequilibrium and orthoequilibrium' by M. Hillert and J. Agren, scripta materialia, 50, 697-9 (2004),' Scripta Mater., 52 (2005) 83-85. [96] D.P. Koistinen, R.E. Marburger, 'A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,' Acta Metall., 7 (1959) 59-60. [97] S.M.C. Van Bohemen, J. Sietsma, 'Martensite formation in partially and fully austenitic plain carbon steels,' Metall. Mater. Trans. A, 40A (2009) 1059-1068. [98] H.-S. Yang, H.K.D.H. Bhadeshia, 'Austenite grain size and the martensite-start temperature,' Scripta Mater., 60 (2009) 493-495. [99] B.V.N. Rao, 'Orientation relationships between retained austenite and lath martensite,' Metall. Mater. Trans. A, 10 (1979) 645-648. [100] G. Thomas, 'Retained austenite and tempered martensite embrittlement,' Metall. Mater. Trans. A, 9 (1978) 439-450. [101] X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, 'The effect of morphology on the stability of retained austenite in a quenched and partitioned steel,' Scripta Mater., 68 (2013) 321-324. [102] H.K.D.H. Bhadeshia, D.V. Edmonds, 'Bainite in silicon steels - new composition property approach .1,' Metal Sci., 17 (1983) 411-419. [103] A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, M.J. Santofimia, 'Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning,' Scripta Mater., 61 (2009) 149-152. [104] A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, 'Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment,' Acta Mater., 56 (2008) 16-22. [105] Y. Takahama, M.J. Santofimia, M.G. Mecozzi, L. Zhao, J. Sietsma, 'Phase field simulation of the carbon redistribution during the quenching and partitioning process in a low-carbon steel,' Acta Mater., 60 (2012) 2916-2926. [106] J.G. Speer, R.E. Hackenberg, B.C. Decooman, D.K. Matlock, 'Influence of interface migration during annealing of martensite/austenite mixtures,' Philos. Mag. Lett., 87 (2007) 379-382. [107] M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao, J. Sietsma, 'Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing,' Acta Mater., 57 (2009) 4548-4557. [108] M.J. Santofimia, L. Zhao, J. Sietsma, 'Overview of mechanisms involved during the quenching and partitioning process in steels,' Metall. Mater. Trans. A, 42A (2011) 3620-3626. [109] M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, 'Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel,' Acta Mater., 59 (2011) 6059-6068. [110] H. Okamoto, M. Oka, 'Lower bainite with midrib in hypereutectoid steels,' Metall. Mater. Trans. A, 17 (1986) 1113-1120. [111] D.H. Kim, J.G. Speer, H.S. Kim, B.C. De Cooman, 'Observation of an isothermal transformation during quenching and partitioning processing,' Metall. Mater. Trans. A, 40A (2009) 2048-2060. [112] S.M.C. van Bohemena, M.J. Santofimia, J. Sietsma, 'Experimental evidence for bainite formation below Ms in Fe-0.66C,' Scripta Mater., 58 (2008) 488-491. [113] P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedström, S. Babu, H. Terasaki, Y.-I. Komizo, 'Direct observation that bainite can grow below ms,' Metall. Mater. Trans. A, 43 (2012) 4984-4988. [114] D. Kim, J.G. Speer, B.C. De Cooman, 'Isothermal transformation of a cmnsi steel below the m-s temperature,' Metall. Mater. Trans. A, 42A (2011) 1575-1585. [115] C. Hofer, H. Leitner, F. Winkelhofer, H. Clemens, S. Primig, 'Structural characterization of 'carbide-free' bainite in a Fe-0.2C-1.5Si-2.5Mn steel,' Mater. Charact., 102 (2015) 85-91. [116] R.H. Larn, J.R. Yang, 'The effect of compressive deformation of austenite on the bainitic ferrite transformation in Fe-Mn-Si-C steels,' Mater. Sci. Eng. A, 278 (2000) 278-291. [117] M. Peet, H.K.D.H. Bhadeshia, Materials Algorithms Project, http://www.msm.cam.ac.uk/map/steel/programs/mucg83.html. [118] W.-S. Lee, C.-F. Lin, T.-H. Chen, H.-W. Chen, 'Dynamic mechanical behaviour and dislocation substructure evolution of inconel 718 over wide temperature range,' Mater. Sci. Eng. A, 528 (2011) 6279-6286. [119] W.-S. Lee, C.-F. Lin, T.-H. Chen, W.-Z. Luo, 'High temperature deformation and fracture behaviour of 316l stainless steel under high strain rate loading,' J. Nucl. Mater., 420 (2012) 226-234. [120] W.-S. Lee, C.-F. Lin, T.-H. Chen, M.-C. Yang, 'High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate,' Mater. Sci. Eng. A, 527 (2010) 3127-3137. [121] R. Kapoor, S. Nemat-Nasser, 'Determination of temperature rise during high strain rate deformation,' Mechanics of Materials, 27 (1998) 1-12. [122] E.P. da Silva, W. Xu, C. Fojer, Y. Houbaert, J. Sietsma, R.H. Petrov, 'Phase transformations during the decomposition of austenite below M-s in a low-carbon steel,' Mater. Charact., 95 (2014) 85-93. [123] M. Oka, H. Okamoto, 'Swing back in kinetics near ms in hypereutectoid steels,' Metall. Mater. Trans. A, 19 (1988) 447-452. [124] G. Krauss, A.R. Marder, 'Morphology of martensite in iron alloys,' Metall. Mater. Trans. A, 2 (1971) 2343-&. [125] S. Morito, K. Oh-ishi, K. Hono, T. Ohba, 'Carbon enrichment in retained austenite films in low carbon lath martensite steel,' ISIJ Int., 51 (2011) 1200-1202. [126] J.H. Pak, H.K.D.H. Bhadeshia, L. Karlsson, 'Mechanism of misorientation development within coalesced martensite,' Mater. Sci. Technol., 28 (2012) 918-923. [127] N. Zhong, X.D. Wang, Y.H. Rong, L. Wang, 'Interface migration between martensite and austenite during quenching and partitioning (Q&P) process,' J. Mater. Sci. Technol., 22 (2006) 751-754. [128] H. Chen, A. Borgenstam, J. Odqvist, I. Zuazo, M. Goune, J. Ågren, S.v. der Zwaag, 'Application of interrupted cooling experiments to study the mechanism of bainitic ferrite formation in steels,' Acta Mater., 61 (2013) 4512-4523. [129] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, 'Design of novel high strength bainitic steels: Part 1,' Mater. Sci. Technol., 17 (2001) 512-516. [130] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, 'Acceleration of low-temperature bainite,' ISIJ Int., 43 (2003) 1821-1825. [131] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, 'Development of hard bainite,' ISIJ Int., 43 (2003) 1238-1243. [132] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, 'Low temperature bainite,' J. Phy. IV, 112 (2003) 285-288. [133] H.K.D.H. Bhadeshia, 'Nanostructured bainite,' Proc. R. Soc. A, 466 (2009) 3-18. [134] B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani, F.G. Caballero, 'Strengthening and mechanical stability mechanisms in nanostructured bainite,' J. Mater. Sci., 48 (2013) 6121-6132. [135] S. Khare, K. Lee, H. Bhadeshia, 'Carbide-free bainite: Compromise between rate of transformation and properties,' Metall. Mater. Trans. A, 41A (2010) 922-928. [136] H. Huang, M.Y. Sherif, P.E.J. Rivera-Diaz-del-Castillo, 'Combinatorial optimization of carbide-free bainitic nanostructures,' Acta Mater., 61 (2013) 1639-1647. [137] H.L. Chen, Master Thesis, National Taiwan University (2010) [138] Y.L. Tsai, Master Thesis, National Taiwan University (2011) [139] H.S. Hasan, M. Peet, H. Bhadeshia, S. Wood, E. Booth, 'Temperature cycling and the rate of the bainite transformation,' Mater. Sci. Technol., 26 (2010) 453-456. [140] H.T. Huang, Master Thesis National Taiwan University (2009) [141] J. He, A. Zhao, C. Zhi, H. Fan, 'Acceleration of nanobainite transformation by multi-step ausforming process,' Scripta Mater., 107 (2015) 71-74. [142] W. Gong, Y. Tomota, M.S. Koo, Y. Adachi, 'Effect of ausforming on nanobainite steel,' Scripta Mater., 63 (2010) 819-822. [143] P.Y. Tung, Master Thesis, National Taiwan University (2015) [144] Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, D. Raabe, 'Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy,' Acta Mater., 65 (2014) 215-228. [145] S.B. Singh, H.K.D.H. Bhadeshia, 'Estimation of bainite plate-thickness in low-alloy steels,' Mater. Sci. Eng. A, 245 (1998) 72-79. [146] H.T. Chang, PhD Thesis, National Taiwan University (2011) [147] C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, R. Elvira, 'Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon,' Mater. Sci. Eng. A, 549 (2012) 185-192. [148] S.S. Babu, S. Vogel, C. Garcia-Mateo, B. Clausen, L. Morales-Rivas, F.G. Caballero, 'Microstructure evolution during tensile deformation of a nanostructured bainitic steel,' Scripta Mater., 69 (2013) 777-780. [149] F. Hu, K.M. Wu, 'Nanostructured high-carbon dual-phase steels,' Scripta Mater., 65 (2011) 351-354. [150] T.S. Wang, J. Yang, C.J. Shang, X.Y. Li, B. Zhang, F.C. Zhang, 'Microstructures and impact toughness of low-alloy high-carbon steel austempered at low temperature,' Scripta Mater., 61 (2009) 434-437. [151] F.G. Caballero, H.K.D.H. Bhadeshia, 'Very strong bainite,' Curr. Opin. Solid State Mater. Sci., 8 (2004) 251-257. [152] B. Avishan, S. Yazdani, S. Hossein Nedjad, 'Toughness variations in nanostructured bainitic steels,' Mater. Sci. Eng. A, 548 (2012) 106-111. [153] F.G. Caballero, J. Chao, J. Cornide, C. Garcia-Mateo, M.J. Santofimia, C. Capdevila, 'Toughness deterioration in advanced high strength bainitic steels,' Mater. Sci. Eng. A, 525 (2009) 87-95. [154] Y.T. Tsai, H.T. Chang, B.M. Huang, C.Y. Huang, J.R. Yang, 'Microstructural characterization of charpy-impact-tested nanostructured bainite,' Mater. Charact., 107 (2015) 63-69. [155] L.C.D. Fielding, H.K.D.H. Bhadeshia, 'Shear band structure in ballistically tested bainitic steels,' Mater. Sci. Technol., 30 (2014) 812-817. [156] J.J. DeMange, V. Prakash, J.M. Pereira, 'Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy,' Int. J. Im. Eng., 36 (2009) 1027-1043. [157] Z.-p. Xiong, X.-p. Ren, W.-p. Bao, S.-x. Li, H.-t. Qu, 'Dynamic mechanical properties of the fe–30mn–3si–4al twip steel after different heat treatments,' Mater. Sci. Eng. A, 530 (2011) 426-431. [158] F.G. Caballero, H.-W. Yen, M.K. Miller, J.-R. Yang, J. Cornide, C. Garcia-Mateo, 'Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels,' Acta Mater., 59 (2011) 6117-6123. [159] E. Gullikson, X-Ray Interactions With Matter http://henke.lbl.gov/optical_constants/ [160] E.C. Bain, H.W. Paxton, The alloying elements in steel, American Society for Metals, Ohio, 1966. [161] B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, 'Microstructures and hardness of as-quenched martensites (0.1–0.5%C),' Acta Mater., 59 (2011) 5845-5858. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51458 | - |
dc.description.abstract | 淬火擴散製程Q&P所利用的核心概念,最早由Matas與Hehemann在1960年所證實:麻田散鐵在回火過程,碳可能由過飽和的麻田散鐵粄條,擴散至周遭的沃斯田鐵。然其工業應用,則遲至2003年,由Edmond,Speer,Matlock所提出:利用此碳遷移的特性,來穩定化沃斯田鐵;他們並設想了Q&P的計算方法,從而決定最佳的焠火溫度、讓Q&P製程有執行依據。然而,實際上量測結果,沃斯田鐵含量與預測含量有顯著,這代表著學術界對Q&P時的相變態行為並未充分理解。其中最關鍵之因素,即為麻田散鐵散鐵在部分生成後,微結構非靜態的不變,而是持續的相變態。因此本論文專注於部分麻田散鐵生成後之相變態過程。
此論文之研究主題為高矽合金,經淬火擴散製程(Q&P)後,其顯微結構之觀察及機械性質。研究中的高矽合金則概略分為低碳及高碳合金,並分別使用一階段、二階段Q&P製程。研究發現:一階段Q&P時,會發生顯著的沃斯田鐵分解。此外,相變態的速率明顯較變韌鐵快。在此高矽合金中,變韌鐵組織為變韌肥粒鐵與沃斯田鐵所組成;而ㄧ階段Q&P,其組織由回火麻田散鐵、合併之麻田散鐵、下變韌鐵、上變韌鐵組成,並有麻田散鐵介面遷移之跡象。由此可得知文獻中所計算之Q&P最佳持溫溫度,由於未考慮到此恆溫相變態的,因此會造成計算沃斯田鐵含量的誤差。 高碳合金在二階段Q&P時,於擴散製程時會發生變韌鐵相變態。此外,先前麻田散鐵的存在,使變韌鐵相變態有約一個級數的顯著加速。此外,變韌鐵之外形發生顯著變化、非傳統束狀之外形。此方法為目前唯一可維持變韌鐵合金強度、並能同時加速的方法。 為研究奈米變韌鐵在查皮(Charpy)衝擊時高速三軸應力下之行為,進行TEM切片觀察、與同步輻射XRD實驗,發現破裂表面僅剩下麻田散鐵組織,沃斯田鐵則完全消失。代表在衝擊時,裂縫傳播時產生麻田散鐵,造成其脆性;霍普金森撞擊實驗則可發現在高速單軸壓應力,產生大量雙晶變形。此外,結果顯示,Q&P製程對查皮衝擊韌性無改善效果;然而另一方面,則發現在霍普金森撞擊實驗時,有延性破壞之證據。 | zh_TW |
dc.description.abstract | The core idea of Q&P processing was proposed by Matas and Hehemann in 1960: during tempering, carbon can diffuse from supersaturated martensite to adjacent austenite. However, carbon partitioning on industrial applications was not proposed until 2003, when Edmonds, Speer and Matas indicated that stabilization of austenite can be achieved by carbon partitioning. They also proposed Q&P methodology, which determine the optimal quenching temperature for this process. However, the measurements on retained austenite volume fraction significantly deviate from predicted fractions, indicating insufficient understanding on Q&P processing. The most important cause is that microstructure is not static after partial martensite formation, and instead, austenite decompositions still occurs. Therefore, this thesis is focused on the phase transformation after partial martensite formation.
In this research, the microstructures and the mechanical properties of high Si steels after quench and partitioning (Q&P) processing were studied. Low carbon grades and a high carbon steel were used, and one-step and two-step Q&P heat treatments were respectively conducted for investigation on the resulting microstructures. It was found that for low carbon alloys, during one-step Q&P processing, significant austenite decomposition occurs, and the decomposition rate is faster than bainite transformation. the microstructures after one-stage Q&P are composed of tempered coalesced martensite, lower bainite, upper bainite and interface migrations. Therefore in previous literature, the Q&P optimization methodology does not take isothermal transformation into account, leading to deviation in the predicted austenite amount. For high carbon alloy, during partitioning stage, bainite transformation occurred. The presence of martensite drastically accelerated the formation of bainite by an order of magnitude, and changed the bainite morphology. Conducting Q&P heat treatment is currently the only available method to maintained the strength of nanostructure while accelerate bainite transformation. To study the microstructural evolution during Charpy impact test which develpes tri-axial stress in nanostructured bainite, TEM observation and synchrotron radiation XRD were conducted. It was found that in the fracture surface, only martensitic structure remained and austenite disappeared. The results indicated that crack propagation lead to martensite formation, and brittleness results; in contrast, during split Hopkinson pressure bar compression, twinning deformation is dominant. For Q&P specimens, Charpy results showed no improvement in impact toughness, but split Hopkinson pressure bar shows that ductile fracture was possible even at very high strain rate. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:34:57Z (GMT). No. of bitstreams: 1 ntu-105-F99527004-1.pdf: 25039617 bytes, checksum: 5d02b527b5942d6ab83df71c1fc2d8a5 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試審定書 I
誌謝 II 摘要 IV Abstract VI Content IX Figures Content XIII Tables Content XXIII Chapter 1 - Introduction 1 Chapter 2 - General Literature Review 3 2.1 The Microstructure in Steels 3 2.1.1 Reconstructive Product 5 2.1.2 Displacive Products 10 2.1.3 Martensite 13 2.1.4 Bainite 18 2.2 TRIP-assisted Steels 21 2.2.1 The Principles of Transformation Induced Plasticity 22 2.2.2 TRIP Steels 26 2.2.3 ART-annealing Steels 28 2.2.4 Ultra-Fine Grained Steels with TRIP 30 2.3 Quenching & Partitioning (Q&P) Process 32 2.3.1 Invention of Q&P Process 32 2.3.2 Quenching & Partitioning Process Calculation Methodology 36 2.3.3 Martensite Start Temperature 36 2.3.4 Paraequilibrium and Constraint Carbon Equilibrium (CCE) 37 2.3.5 Martensite Phase Fraction Equation 41 2.3.6 Q&P Methodology Results 42 2.3.7 Q&P Methodology Comments 46 2.3.8 Works on Explaining the Deviation of Retained Austenite Amount 48 2.3.9 Carbon Escape kinetics 49 2.3.10 Interface Migration 51 2.3.11 Austenite Decomposition Below Ms 53 Chapter 3 - General Experimental Procedure 57 3.1 Experimental Alloys 57 3.1.1 Predicted TTT Diagrams of Experiments Alloys 58 3.1.2 As-Received Plate 59 3.2 Specimen 60 3.2.1 Specimen Size 60 3.2.2 Specimen Preparations for Optical Microscopy 62 3.2.3 Specimen Preparations for EBSD 62 3.2.4 Specimen Preparations for XRD and Synchrotron XRD 63 3.2.5 Specimen Preparations for TEM 63 3.3 Instruments for Mechanical Tests 64 3.3.1 Vickers Hardness Testing Machine 64 3.3.2 Split Hopkinson Pressure Bar 64 3.4 Instruments for Heat treatment 66 3.4.1 Electrical-Resistance Heating Furnace 66 3.4.2 Dilatometer 66 3.5 Instruments for Microstructure Characterization 68 3.5.1 Optical Microscope (OM) 68 3.5.2 Scanning Electron Microscope (SEM) 68 3.5.3 Electron Backscattered Diffraction (EBSD) 68 3.5.4 X-Ray Diffractometer 69 3.5.5 Synchrotron Radiation X-Ray Diffraction 69 3.5.6 Transmission Electron Microscope (TEM) 70 Chapter 4 - Microstructural Evolution during Q&P in Low Carbon Steels 71 4.1 Introduction on Nanostructured Bainite 71 4.2 Experimental 72 4.2.1 Fine Control over Tq 72 4.2.2 Heat treatment 74 4.2.3 Example Cooling Curves 75 4.3 Results & Discussions 77 4.3.1 Experimental TTT Diagram 77 4.3.2 Isothermal Decomposition During One-Step Q&P 78 4.3.3 The Overall Morphology of Bainite and One-Step Q&P 84 4.3.4 The TEM Morphology of Bainite and One-Step Q&P 89 4.4 Discussion 99 4.5 Summary 102 Chapter 5 - Microstructural Evolution during Q&P in High Carbon Steels 103 5.1 Introduction on Nanostructured Bainite 103 5.2 Experimental 105 5.3 Results & Discussions 106 5.3.1 Reference Morphology 106 5.3.2 Tempered Martensite 109 5.3.3 The Kinetics of Q&P(B) SB alloy 113 5.3.4 The Morphology of Q&P(B) SB alloy 116 5.3.5 The Hardness of Q&P(B) SB alloy 125 5.4 Discussion 126 5.5 Summary 128 Chapter 6 - Mechanical Properties of Q&P High Carbon Steels after High Strain Rate Deformation 129 6.1 Introduction 129 6.2 Experimental 132 6.2.1 Experiment Design for Microstructure Characterization on Charpy Impact Surface 132 6.2.2 Experiment Design for SHPB 134 6.3 Results and Discussions 135 6.3.1 The Deformation Mode of Austenite during Charpy Impact 135 6.3.2 Observation of Impact Fracture Surface by Synchrotron Radiation 139 6.3.3 Austenite Deformation Mode during SHPB 146 6.4 Effect of Q&P on High Strain Rate Deformation 152 6.4.1 Effect of Q&P on Charpy Impact 152 6.4.2 Effect of Q&P on SHPB 153 6.5 Summary 156 Chapter 7 - Future Work 157 Reference 159 Appendix A - Q&P after Intermediate Quenching 171 Appendix B - EBSD Related Calculations 181 | |
dc.language.iso | en | |
dc.title | 高矽鋼淬火擴散製程之微結構及其機械性質 | zh_TW |
dc.title | The Microstructure Characterization and Mechanical Properties of Quench & Partitioning High Si Steels | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 葉均蔚(Jien-Wei Yeh),王星豪(Shing-Hoa Wang),李偉賢(Woei-Shyan Lee),陳志遠(Chih-Yuan Chen),王樂民(Le-Min Wang) | |
dc.subject.keyword | 鋼鐵,電子顯微鏡,Q&P製程,TRIP鋼, | zh_TW |
dc.subject.keyword | Steel,Transmission electron microscopy,Quench and Partitioning (Q&P),TRIP steels, | en |
dc.relation.page | 196 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 24.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。