Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平
dc.contributor.authorTai-Yu Chenen
dc.contributor.author陳泰宇zh_TW
dc.date.accessioned2021-06-15T13:34:03Z-
dc.date.available2018-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-01-31
dc.identifier.citation[1] O. Wood, C.-S. Koay, K. Petrillo, H. Mizuno, S. Raghunathan, J. Arnold, D. Horak, M. Burkhardt, G. McIntyre, Y. Deng, B. L. Fontaine, U. Okoroanyanwu, A. Tchikoulaeva, T. Wallow, J. H.-C. Chen, M. Colburn, S. S.-C. Fan, B. S. Haran, and Y. Yin. “Integration of EUV lithography in the fabrication of 22 nm node devices.” In Proceedings of SPIE, volume 7271, pages 727104–727104-10, 2009.
[2] Y.C.Lin, T. Westerwalbesloh, A. Aschentrup, O. Wehmeyer, G. Haindl, U. Kleineberg, U. Heinzmann. “Fabrication and characterization of EUV multilayer mirrors optimized for small spectral reflection bandwidth.” Appl. Phys. A, Volume 72, Issue 1, pages 121-124, 2001.
[3] C. G. Krautschik, M. Ito, I. Nishiyama, and S. Okazaki. “Impact of EUV light scatter on CD control as a result of mask density changes.” In Proceedings of SPIE, volume 4688, pages 289–301, 2002.
[4] N. Benoit, S. Yulin, T. Feigl, N. Kaiser. “Radiation stability of EUV Mo/Si multilayer mirrors.” Physica B. 357, Pages 222-226, 2005.
[5] S.-Y. Fang and Y.-W. Chang, “Simultaneous Flare Level and Flare Variation Minimization with Dummification in EUVL.” Proc. DAC, pages 1179-1184, 2012.
[6] A. Poonawala, P. Milanfar. “A pixel-based regularization approach to inverse lithography.” AIP, volume 84, issue 12, pages 2837-2852, 2007.
[7] Geng Z., Shi Z., Yan XL., Luo KS., and Pan WW. “Fast Level-Set-Based Inverse Lithography Algorithm for Process Robustness Improvement and Its Application.” Journal of Computer Science and Technology, volume 30, Issue 3, pages 629-638, 2015.
[8] Y. Arisawa , H. Aoyama , T. Uno and T. Tanaka , 'EUV flare correction for the half-pitch 22 nm node' , Proc. SPIE Extreme Ultraviolet (EUV) Lithography , volume 7636 , pages.763618-1 -763618-11 , 2010.
[9] V. K. Singh. Et al. “Method for modifying a chip layout to minimize within-die CD variations caused by flare variations in EUV lithography” US patent 6.625.802, Sep. 2003.
[10] FFTW3 (Fastest Fourier Transform in the West). http://www.fftw.org/
[11] H. Aoyana et al., “Applicability of extreme ultraviolet lithography to fabrication of half pitch 35nm interconnects,” Proc. SPIE, 7636 , Feb. 2010.
[12] J. Lee et al., “A study of flare variation in extreme ultraviolet lithography for sub-22nm line and space pattern,” Jpn. J. Appl. Phys. , pp. 06GD09, Jan. 2010
[13] Vivek Bakshi, “EUV Sources for Lithography”, ISBN13: 9780819458452, 2006.
http://ebooks.spiedigitallibrary.org/book.aspx?bookid=124
[14] C. Zuniga, M. Habib, J. Word, G. F. Lorusso, E. Hendrickx, B. Baylav, R. Chalasani, and M. Lam. “EUV flare and proximity modeling and model-based correction.” In Proceedings of SPIE, volume 7969, pages 79690T–79090T-13, 2011
[15] F. M. Schellenberg, J. Word, and O. Toublan. “Layout compensation for EUVflare. “In Proceedings of SPIE, volume 5751, pages 320–329, 2005.
[16] Y.C. Lim, T. Westerwalbesloh, A. Aschentrup, O. Wehmeyer, G. Haindl, U. Kleineberg, U. Heinzmann. 'Fabrication and characterization of EUV multilayer mirrors optimized for small spectral reflection bandwidth.' Appl. Phys. A 72, 121–124 (2001).
[17] Benchmark from MCNC website
http://cadlab.cs.ucla.edu/~kirill/
[18] Benchmark from industrial Faraday website
http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/#Faraday_Bench
[19] Applied Materials EUVL mask etch system debuts with multiple installs
http://electroiq.com/blog/2011/09/applied-materials-euvl-mask-etch-system-debuts-with-multiple-installs/
[20] E. P. Bertin, “Crystals and Multilayer Langmuir-Blodgett Films Used as Analyzers in Wavelength-Dispersive X-Ray Spectrometers,” in J. W. Robinson, Ed., Handbook of Spectroscopy(CRC Press, Cleveland, 1974), vol. 1, p. 238.
[21] http://electroiq.com/blog/2011/09/applied-materials-euvl-mask-etch-system-debuts-with-multiple-installs/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51433-
dc.description.abstract目前IC製造中,最重要的過程之一是光顯影技術,目前業界所廣泛運用之193nm的紫外光,已經到達其物理極限,若要往次20nm以下之製程節點走,極紫外光光刻技術是其中一種很有希望的次世代光刻技術。目前世界上之晶圓製造公司也正往此技術上投入了大量的研究資源;但是在極紫外光中仍有很許多問題必須解決,在此篇論文中我們將討論因極紫外光光蝕刻的光學系統散射產生令人困擾的極紫外光閃焰效應(EUV flare effect)。
高含量與高差異量的極紫外光閃焰會影響臨界尺度(CD)的控制上的問題,在之前的研究中顯示0.2%的閃焰改變量就會影響2nm的臨界尺度。在正光阻製程中已經有使用虛擬金屬(dummy fill)來降低高含量閃焰與高差異量的閃焰,我們運用相似的想法在負光阻製程中來降低高差異量的閃焰。正光阻製程與負光阻製程之間在光罩上的定義有所不同,負光阻製程所使用的是暗場光罩。在暗場光罩中,電路設計上原本所需要的圖案或虛擬金屬都會增加光罩上的反光面積也會使晶圓上的閃焰含量增加。因此我們無法藉由加入虛擬金屬降低閃焰含量,所以我們需要設法不要使用太多的虛擬金屬增加不必要的閃焰含量。加入虛擬金屬的區域也會因為正、負光阻不同而不同的趨向,負光阻提升四周的閃焰含量會分散在邊緣跟角落的區域。我們可以利用個二維的高斯分布來模擬閃焰含量與光罩上反射光源的區域之間的轉積核心,藉由把光罩上反射的區域與用來模擬閃焰的高斯分布摺積的運算得到閃焰含量的分布。我們用一個漸進式的方法,盡量在低含量閃焰的地方加入虛擬金屬來降低閃焰的差異量。實驗結果顯示我們的方法可以有效地降低40%閃焰的差異量,成功讓臨界尺度達到比較好的控制。此外我們是第一個在負光阻製程中考量降低閃焰的差異的研究。
zh_TW
dc.description.abstractIn the semiconductor manufacturing process, one of the most important techniques is photo lithography. The light with 193nm wavelength has the physical limitation problem on resolution. Extreme Ultraviolet Lithograph (EUVL) is one of the promising Next Generation Lithography (NGL) technologies. Most of foundries have invested considerable resources in the NGL technology. In this thesis we will mention one of the critical issues is EUV flare which is an undesirable scattered light due to the optical surface roughness.
The high level EUV flare and the large flare variation could affect the control of critical dimension (CD) uniformity. However, previous work has reported that 0.2% change in flare level may cause 2 nm change in CD. There is a way to reduce flare variation and flare level for the process by using dummy fill for positive-tone photoresist process. We used the similar idea to reduce flare variation for negative- tone photoresist process. There is a mask different between negative-tone and positive-tone photoresist that negative-tone photoresist used dark field mask. For dark field mask process, the pattern or dummy fill are increasing the reflective area on the mask and the flare level on wafer, so we cannot decrease flare level by adding dummy fill. The distribution of dummy fill will be different that the dummy fill will accumulate in the middle for bright field mask, but in our case the dummy fill will accumulate on the edge for dark field mask process. We use a progressive method to reduce flare variation by insert dummy fill on low flare level region. Experimental results show that our process can reduce the flare variation by 40%, which may contribute to the better control of CD uniformity. This thesis presents the first work that reduce the flare variation for the negative-tone photoresist process.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:34:03Z (GMT). No. of bitstreams: 1
ntu-105-R02943144-1.pdf: 2035034 bytes, checksum: 6e6f0d67c49dd797e0d6dcc9453c413e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction P.1
1.1 Introduction of Extreme Ultraviolet Lithography P.1
1.2 Flare Variation in Extreme Ultraviolet Lithography P.2
1.3 Organization P.3
Chapter 2 Preliminaries P.4
2.1 Extreme Ultraviolet Light Source and EUV Flare Effect P.4
2.1.1 EUVL Source P.4
2.1.2 Point Spread Function of EUV Flare P.6
2.2 Extreme Ultraviolet Reflective Mask P.8
2.2.1 Negative-tone Photoresist and Dark Field Mask P.8
2.2.2 EUV mask structure P.9
2.3 Related work P.10
2.3.1 Insert Dummy with Convolving Quasi-invers PSF P.10
2.3.2 Pixel-based Inverse Lithography P.12
Chapter 3 Flare Variation Reduction with Dummy Fill P.17
3.1 Problem Formulation P.17
3.1.1 Negative-tone Dummy Fill P.17
3.1.2 Formulation P.19
3.1.3 Pattern Density and Available Dummy Density Map and Flare Level Map Calculation P.20
3.1.4 Extend the map for the limitation P.22
3.2 Fill Dummy by Finding Minimum Flare Level P.25
3.2.1 Linear Insert Dummy Fill Method P.25
3.2.2 Stepped Insert Dummy Fill Method P.28
3.2.3 Improvement of Stepped Insert Dummy Fill with Flare Level first-order derivatives and Variable Step P.31
Chapter 4 Experimental Results P.34
4.1 The figures of the result P.34
4.2 The tables of results P.39
Chapter 5 Conclusion and Future Work P.45
REFERENCE P.46
dc.language.isoen
dc.title利用虛擬金屬降低負光阻製程中極紫外光閃焰變異量之方法zh_TW
dc.titleEUV Flare Variation Reduction with Dummy Fill for Negative-tone Photoresist Processen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江介宏,盧奕璋
dc.subject.keyword光蝕刻,極紫外光光蝕刻,極紫外光閃焰,負光阻製程,暗場光罩,zh_TW
dc.subject.keywordLithography,Extreme Ultraviolet Lithograph,EUV flare,negative-tone photoresist process,dark field mask,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2016-02-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved