請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | ?良碩(Liang-Saw Wen) | |
dc.contributor.author | Meng-Shan Wu | en |
dc.contributor.author | 吳孟珊 | zh_TW |
dc.date.accessioned | 2021-06-15T13:33:33Z | - |
dc.date.available | 2021-03-08 | |
dc.date.copyright | 2016-03-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-01 | |
dc.identifier.citation | 林佩萱(2012)。海洋浮游動物體內的微量金屬元素。國立臺灣大學海洋研究所碩士論文。
鄭重、李少菁、許振祖(1991)。《海洋浮游生物學》。基隆市:水產出版社。 陳鴻裕(2006)。紅腳蟳血藍蛋白生化特性研究。國立中山大學生物科技暨資源學研究所博士論文。 陳昱亨(2014)。不同粒徑浮游生物體內微量元素的濃度變化。國立臺灣大學海洋研究所碩士論文。 袁澣(1989)。《浮游生物學》。南山堂出版社。 Ara, K., 2001. Length-weight relationships and chemical content of the planktonic copepods in the Cananeia Lagoon estuarine system, Sao Paulo, Brazil. Plankton biology & ecology. Beers, J.R., 1966. Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnology and Oceanography, 11(4): 520-528. Bowles, K.C., Apte, S.C., Maher, W.A., Kawei, M. and Smith, R., 2001. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Canadian Journal of Fisheries and Aquatic Sciences, 58(5): 888-897. Boyle, E.A., Sclater, F. and Edmond, J.M., 1976. On the marine geochemistry of cadmium. Nature, 263(5572): 42-44. Brügmann, L. and Hennings, U., 1994. Metals in Zooplankton from the Baltic Sea, 1980–84. Chemistry and Ecology, 9(2): 87-103. Burgos, M.G. and Rainbow, P.S., 1998. Uptake, Accumulation and Excretion byCorophium volutator(Crustacea: Amphipoda) of Zinc, Cadmium and Cobalt Added to Sewage Sludge. Estuarine, Coastal and Shelf Science, 47(5): 603-620. Campbell, L.M. et al., 2005. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ, 351-352: 247-63. Chen, C.Y. et al., 2000. Accumulation of heavy metals in food web components across a gradient of lakes. Limnology and Oceanography, 45(7): 1525-1536. Chen, X., Baines, S.B. and Fisher, N.S., 2011. Can copepods be limited by the iron content of their food? Limnology and Oceanography, 56(2): 451-460. Clason, B. and Zauke, G.P., 2000. Bioaccumulation of trace metals in marine and estuarine amphipods: evaluation and verification of toxicokinetic models. Canadian Journal of Fisheries and Aquatic Sciences, 57(7): 1410-1422. Croteau, M.-N., Luoma, S.N. and Stewart, A.R., 2005. Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature. Limnology and Oceanography, 50(5): 1511-1519. Dalbec, A.A. and Twining, B.S., 2009. Remineralization of bioavailable iron by a heterotrophic dinoflagellate. Aquatic Microbial Ecology, 54: 279-290. Dehn, L.A. et al., 2006. Trophic relationships in an Arctic food web and implications for trace metal transfer. Sci Total Environ, 362(1-3): 103-23. Fang, T.-H., Hsiao, S.-H. and Nan, F.-H., 2014. Nineteen trace elements in marine copepods collected from the coastal waters off northeastern Taiwan. Continental Shelf Research, 91: 70-81. Fang, T.H., Hwang, J.S., Hsiao, S.H. and Chen, H.Y., 2006. Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast. Mar Environ Res, 61(2): 224-43. Fialkowski, W., Rainbow, P.S., Smith, B.D. and Zmudzinski, L., 2003. Seasonal variation in trace metal concentrations in three talitrid amphipods from the Gulf of Gdansk, Poland. Journal of Experimental Marine Biology and Ecology, 288(1): 81-93. Fisher, N.S. et al., 2000. Trace metals in marine copepods:a field test of a bioaccumulation model coupled to laboratory uptake kinetics data. Marine Ecology Progress Series, 194: 211-218. Fossi, M.C. et al., 2002. Multi-trial biomarker approach in Meganyctiphanes norvegica: a potential early indicator of health status of the Mediterranean “whale sanctuary”. Marine Environmental Research, 54(3-5): 761-767. Fowler, S.W., 1977. Trace elements in zooplankton particulate products. Nature, 269(5623): 51-53. Gagneten, A.M. and Paggi, J.C., 2008. Effects of Heavy Metal Contamination (Cr, Cu, Pb, Cd) and Eutrophication on Zooplankton in the Lower Basin of the Salado River (Argentina). Water, Air, and Soil Pollution, 198(1-4): 317-334. Gerrish, G.A. and Morin, J.G., 2008. Life Cycle of a Bioluminescent Marine Ostracode, Vargula Annecohenae (Myodocopida: Cypridinidae). Journal of Crustacean Biology, 28(4): 669-674. Gilmer, R.W. and Harbison, G.R., 1986. Morphology and field behavior of pteropod molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Marine Biology, 91(1): 47-57. Gobas, F. and Morrison, H., 2000. Bioconcentration and Biomagnification in the Aquatic Environment. Hambright, K.D., Zohary, T. and Güde, H., 2007. Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography, 52(3): 1018-1025. Hannides, C.C.S., Popp, B.N., Choy, C.A. and Drazen, J.C., 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective. Limnology and Oceanography, 58(6): 1931-1946. Hans Wedepohl, K., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. Hedges, J.I. et al., 2002. The biochemical and elemental compositions of marine plankton: A NMR perspective. Marine Chemistry, 78(1): 47-63. Hobson, K.A. et al., 2002. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22-23): 5131-5150. Hook, S. and Fisher, N., 2001a. Reproductive toxicity of metals in calanoid copepods. Marine Biology, 138(6): 1131-1140. Hook, S.E. and Fisher, N.S., 2001b. Sublethal effects of silver in zooplankton: Importance of exposure pathways and implications for toxicity testing. Environmental Toxicology and Chemistry, 20(3): 568-574. Hsiao, S.-H., Hwang, J.-S. and Fang, T.-H., 2011. Copepod species and their trace metal contents in coastal northern Taiwan. Journal of Marine Systems, 88(2): 232-238. Iguchi, N., 2004. Vertical distribution, population structure and life history of Thysanoessa longipes (Crustacea: Euphausiacea) around Yamato Rise, central Japan Sea. Journal of Plankton Research, 26(9): 1015-1023. Ikeda, T., 2012. Metabolism and chemical composition of zooplankton from 500 to 5,000 m depth of the western subarctic Pacific Ocean. Journal of Oceanography, 68(5): 641-649. Ikeda, T., 2014. Metabolism and chemical composition of marine pelagic gastropod molluscs: a synthesis. Journal of Oceanography, 70(3): 289-305. Ikeda, T. and Skjoldal, H.R., 1989. Metabolism and elemental composition of zooplankton from the Barents Sea during early Arctic summer. Marine Biology, 100(2): 173-183. Kahle, J. and Zauke, G.P., 2003. Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere, 51(5): 409-417. Keil, S., De Broyer, C. and Zauke, G.-P., 2008. Significance and Interspecific Variability of Accumulated Trace Metal Concentrations in Antarctic Benthic Crustaceans. International Review of Hydrobiology, 93(1): 106-126. Ki?rboe, T., 2013. Zooplankton body composition. Limnology and Oceanography, 58(5): 1843-1850. Kim, H.S., Yamaguchi, A. and Ikeda, T., 2009. Abundance, biomass and life cycle patterns of euphausiids (Euphausia pacifica, Thysanoessa inspinata and T. longipes) in the Oyashio region, western subarctic Pacific. Plankton and Benthos Research, 4(2): 43-52. Kirchman, D.L., Hoffman, K.A., Weaver, R. and Hutchins, D.A., 2003. Regulation of growth and energetics of a marine bacterium by nitrogen source and iron availability. Marine Ecology Progress Series, 250: 291-296. Lane, T.W. and Morel, F.M., 2000. A biological function for cadmium in marine diatoms. Proc Natl Acad Sci U S A, 97(9): 4627-31. Langston, W.J., Bebianno, M.J. and Burt, G.R., 1998. Metal handling strategies in molluscs. 219-283. Le Borgne, R., 1982. Zooplankton production in the eastern tropical Atlantic Ocean: Net growth efficiency and P:B in terms of carbon, nitrogen,and phosphorus. Limnology and Oceanography, 27(4): 681-698. Lee, B.G. and Fisher, N.S., 1994. Effects of sinking and zooplankton grazing on the release of elements from planktonic debris. Marine Ecology Progress Series, 110: 271-281. Linzen, B. et al., 1985. The structure of arthropod hemocyanins. Science, 229(4713): 519-524. Manno, C., Stowasser, G., Enderlein, P., Fielding, S. and Tarling, G.A., 2015. The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences, 12(6): 1955-1965. Markl, J., Markl, A., Schartau, W. and Linzen, B., 1979. Subunit heterogeneity in arthropod hemocyanins: I. Chelicerata. Journal of Comparative Physiology ? B, 130(4): 283-292. Martin, J.H. and Knauer, G.A., 1973. The elemental composition of plankton. Geochimica et Cosmochimica Acta, 37(7): 1639-1653. Martin, J.L.M., Wormhoudt, A.V. and Ceccaldi, H.J., 1977. Zinc-hemocyanin binding in the hemolymph of Carcinus maenas (Crustacea, Decapoda). Comparative Biochemistry and Physiology Part A: Physiology, 58(2): 193-195. Masuzawa, T., Koyama, M. and Terazaki, M., 1988. A regularity in trace element contents of marine zooplankton species. Marine Biology, 97(4): 587-591. Mohammed, E.H., 2014. Biochemical Response of the Cyclopoida Copepod Apocyclops Borneoensis Exposed to Nickel. Jordan Journal of Biological Sciences, 7(1): 41-47. Morel, F.M. and Price, N.M., 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944-7. Mulrooney, S.B. and Hausinger, R.P., 2003. Nickel uptake and utilization by microorganisms. FEMS Microbiology Reviews, 27(2-3): 239-261. Munger, C. and Hare, L., 1997. Relative Importance of Water and Food as Cadmium Sources to an Aquatic Insect (Chaoborus punctipennis): Implications for Predicting Cd Bioaccumulation in Nature. Environmental Science & Technology, 31(3): 891-895. Nfon, E. et al., 2009. Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea. Sci Total Environ, 407(24): 6267-74. Olivier Pringault, E.C., 2015. Effects of Cadmium Exposure on Reproduction and Survival of the Planktonic Copepod Centropages ponticus. Journal of Marine Science: Research & Development, 05(02). Omori, M., 1969. Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Marine Biology, 3(1): 4-10. Pempkowiak, J., Walkusz-Miotk, J., Beldowski, J. and Walkusz, W., 2006. Heavy metals in zooplankton from the Southern Baltic. Chemosphere, 62(10): 1697-708. Peterson, W., 1998. Life cycle strategies of copepods in coastal upwelling zones. Journal of Marine Systems, 15(1-4): 313-326. Power, M., Klein, G.M., Guiguer, K.R.R.A. and Kwan, M.K.H., 2002. Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39(5): 819-830. Prato, E. and Biandolino, F., 2007. Ciclo biológico del anfidopo <i>Corophium insidiosum</i> (Crustacea: Amphipoda) del Mar Piccolo (Mar Jónico, Italia). Scientia Marina, 70(3). Prato, E., Parlapiano, I. and Biandolino, F., 2013. Sublethal effects of copper on some biological traits of the amphipod Gammarus aequicauda reared under laboratory conditions. Chemosphere, 93(6): 1015-22. Presley, B.J., Taylor, R.J. and Boothe, P.N., 1990. Trace metals in Gulf of Mexico oysters. Sci Total Environ, 97-98: 551-93. Price, N.M. and Morel, F.M.M., 1990. Cadmium and cobalt substitution for zinc in a marine diatom. Nature, 344(6267): 658-660. Price, N.M. and Morel, F.M.M., 1991. Colimitation of phytoplankton growth by nickel and nitrogen. Limnology and Oceanography, 36(6): 1071-1077. Prowe, F., Kirf, M. and Zauke, G.P., 2006. Heavy metals in crustaceans from the Iberian deep sea plain. Scientia Marina, 70(2): 271-279. Rainbow, P.S., 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120(3): 497-507. Reinfelder, J.R., Fisher, N.S., Luoma, S.N., Nichols, J.W. and Wang, W.X., 1998. Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach. Science of The Total Environment, 219(2-3): 117-135. Rejomon, G. et al., 2008. Trace Metal Concentrations in Zooplankton from the Eastern Arabian Sea and Western Bay of Bengal. Environmental Forensics, 9(1): 22-32. Ritterhoff, J. and Zauke, G.-P., 1997a. Bioaccumulation of trace metals in Greenland Sea copepod and amphipod collectives on board ship: verification of toxicokinetic model parameters. Aquatic Toxicology, 40(1): 63-78. Ritterhoff, J. and Zauke, G.-P., 1997b. Trace metals in field samples of zooplankton from the Fram Strait and the Greenland Sea. Science of The Total Environment, 199(3): 255-270. Roesijadi, G., 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 22(2): 81-113. Ruangsomboon, S. and Wongrat, L., 2006. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus. Aquat Toxicol, 78(1): 15-20. Saiz, E., Calbet, A., Atienza, D. and Alcaraz, M., 2007. Feeding and production of zooplankton in the Catalan Sea (NW Mediterranean). Progress in Oceanography, 74(2-3): 313-328. Schmidt, M., 1999. Assimilation of Fe and carbon by marine copepods from Fe-limited and Fe-replete diatom prey. Journal of Plankton Research, 21(9): 1753-1764. Soegianto, A., Irawan, B. and Usman, N., 2013. Effects of sublethal copper concentrations on gills of white shrimp (Litopenaeus vannamei, Boone 1931). Bull Environ Contam Toxicol, 91(6): 630-4. Spindler, K.D., Hennecke, R. and Gellissen, G., 1992. Protein production and the molting cycle in the crayfish Astacus leptodactylus (Nordmann, 1842). General and Comparative Endocrinology, 85(2): 248-253. Szefer, P., Skwarzec, B. and Koszteyn, J., 1985. The occurrence of some metals in mesozooplankton taken from the southern Baltic. Marine Chemistry, 17(3): 237-253. Taki, K., 2004. Distribution and life history of Euphausia pacifica off northeastern Japan. Fisheries Oceanography, 13(s1): 34-43. Tortell, P.D., Maldonado, M.T. and Price, N.M., 1996. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature, 383(6598): 330-332. Turner, J.T., 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology, 27: 57-102. van Bruggen, E.F.J., 1980. Hemocyanin: the mystery of blue blood. Trends in Biochemical Sciences, 5(7): 185-188. Wang, W.-X. and Dei, R.C.H., 2001. Biological uptake and assimilation of iron by marine plankton: influences of macronutrients. Marine Chemistry, 74(2-3): 213-226. Wang, W.-X. and Fisher, N.S., 1998. Accumulation of trace elements in a marine copepod. Limnology and Oceanography, 43(2): 273-283. Wang, W.X., 2002. Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243: 295-309. Wang, X. and Zauke, G.-P., 2004. Size-dependent bioaccumulation of metals in the amphipod Gammarus zaddachi (Sexton 1912) from the River Hunte (Germany) and its relationship to the permeable body surface area. Hydrobiologia, 515(1-3): 11-28. Wen, L.-S., Stordal, M.C., Tang, D., Gill, G.A. and Santschi, P.H., 1996. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry, 55(1-2): 129-152. White, S.L. and Rainbow, P.S., 1985. On the metabolic requirements for copper and zinc in molluscs and crustaceans. Marine Environmental Research, 16(3): 215-229. Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y. and Morel, F.M., 2008. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature, 452(7183): 56-61. Xu, Y., Wang, W.-X. and Hsieh, D.P.H., 2001. Influences of Metal Concentration in Phytoplankton and Seawater on Metal Assimilation and Elimination in Marine Copepods. Environmental Toxicology and Chemistry, 20(5): 1067. Zamora, L.M., King, C.K., Payne, S.J. and Virtue, P., 2015. Sensitivity and response time of three common Antarctic marine copepods to metal exposure. Chemosphere, 120: 267-72. Zauke, G.P. and Schmalenbach, I., 2006. Heavy metals in zooplankton and decapod crustaceans from the Barents Sea. Sci Total Environ, 359(1-3): 283-94. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51418 | - |
dc.description.abstract | 浮游動物在海洋中元素生地化循環扮演著舉足輕重的角色,其攝食、同化、代謝和排泄等生理作用及日夜垂直遷移和死亡後殼體沉降等行為影響微量元素在食物鏈中的傳遞與海洋各層水中微量元素的分布。因此,藉由探討各種浮游動物體內微量元素的組成與種間之差異可以更進一步了解微量元素在海洋中的生物地球化學循環。本研究使用超純淨採樣及分離技術(Ultraclean Size Fraction Techniques),於西菲律賓海採集浮游動物,並配合元素分析儀(Elemental Analysis)、感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry)等分析技術進行基本建構元素(C, N, S, P)及微量金屬元素(Fe, Zn, Cu, Ni, Cd)含量分析。
實驗結果顯示,殼體組成成分不同使甲殼類浮游動物與軟體浮游動物體內基本建構元素碳、氮含量存在類群間差異,軟體浮游動物翼足目的碳氮含量明顯低於其他類甲殼浮游動物;由變異數分析與雪費(Scheffé)事後檢定等結果指出橈足亞綱、端足目、介形綱等甲殼類浮游動物對於微量金屬的攝取策略相似,其體內微量元素含量無明顯的差異。翼足目對於微量元素的生理需求與代謝速率不同於甲殼類浮游動物,使得浮游動物體內必需微量元素鋅、銅與鎳含量存在類群間異質性;微量元素在食物鏈中的傳遞,藉由浮游動物自我調控體內過量的微量元素,使得微量元素在食物鏈中隨著食階上升,微量元素莫爾比值下降。浮游動物體內所需微量元素(鐵、鋅、銅與鎳)的生物放大係數(BMF)皆小於1;而對於生物具有毒性的鎘元素,在傳遞至浮游動物時會有累積現象(BMF>1),但在高營養階層的魚類中卻不見累積現象。 綜合上述實驗結果,體型大小、身體組成結構與生理需求等因子影響浮游動物體內微量元素含量的變化,透過浮游動物主動調控體內元素的多寡,進而影響海洋中微量元素的循環。 | zh_TW |
dc.description.abstract | Zooplanktons play an important role in biogeochemical cycling of metals in marine systems. Through vertical migrations, as well as sedimentation of pellets and dead individuals, it accelerates the element transfer rate in water columns. Hence,to understand trace elemental content and interspecific heterogeneity in zooplankton can further know trace metals biogeochemical cycle in marine environment.
In this study, using Ultraclean Size Fraction Techniques, zooplanktons (size in 363-500 μm, 500-1000 μm, 1000-2000 μm, 2000 μm-2 cm and >2 cm) and fish larvae were collected by vertical plankton tow at oligotrophic Western Philippine Sea. Samples were then separated into several species of zooplankton (i.e. Eucarida, Copepoda, Amphipoda, Ostracoda, and Pteropoda) under microscopes. Each sample fractions were further analyzed for their elemental (C, N, S, P and Ca) and trace metal (Fe, Zn, Cu, Ni and Cd) components. The results show distinct heterogeneity and differences in elemental(C, N) components between crustacean zooplankton and mollusc zooplankton. Due to their differences in body structure, both C and N content of Pteropoda is significantly lower than the other crustacean zooplankton. No significant difference of trace metal content (except Fe) among Copepoda, Amphipoda and Ostracoda were found by ANOVA and Scheffé's Statistic method. However, there is significant difference between crustacean and Pterpoda. This difference may due to their physiological needs and metabolic rates, changes in Zn, Cu, and Ni between Pterpoda and crustacean zooplanktonconfirms such interspecific heterogeneity. Since zooplanktons can accumulate essential metals and actively remove excess metal, essential metals (Fe, Zn, Cu and Ni) were found with decreasing molar ratio with higher trophic level through the food web transfer. Moreover, the results indicate that biomagnification factor (BMF) of essential trace elements (Fe, Zn, Cu, and Ni) measured for zooplankton are all less than 1. On the other hand, Cd biomagnifies (BMFs > 1) from small plankton (10-63 μm and 63-153 μm) to zooplankton (153-2000 μm) and potential biodiminishes (BMFs < 1) from zooplankton to fish. In sum, trace metal concentrations in zooplankton are controlled by body size, body structure and physiological characteristics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:33:33Z (GMT). No. of bitstreams: 1 ntu-105-R02241408-1.pdf: 1537971 bytes, checksum: de7fc4f0536139d43e172edecefa7a2b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 微量元素之生物地球化學循環 1 1.2 浮游動物體內微量元素 2 1.2.1 微量元素在浮游動物體內的功能 3 1.2.2 影響浮游動物體內微量元素含量之因素 5 1.3 微量元素在食物鏈中的傳遞現象 7 1.4 研究目的 8 第二章 材料與方法 11 2.1 研究區域與採樣時間 11 2.2 實驗設備與器材 11 2.3 採樣方法與流程 12 2.4 實驗分析方法 13 2.4.1 樣品消化 13 2.4.2 碳、氮、硫分析 14 2.4.3 微量元素分析 15 第三章 結果 20 3.1 不同尺寸浮游動物族群種類 20 3.2 浮游動物體內元素含量 20 3.2.1基本建構元素含量 20 3.2.2微量金屬元素含量 21 3.3 橈足亞綱(Copepoda)體內元素含量 22 3.3.1基本建構元素含量 22 3.3.2微量金屬體內元素含量 23 3.4 端足目(Amphipoda)元素含量 24 3.4.1基本建構元素含量 24 3.4.2微量金屬元素含量 24 3.5 介形綱(Ostracoda)體內元素含量 25 3.5.1基本建構元素含量 25 3.5.2微量金屬元素含量 26 3.6 翼足目(Pteropoda)體內元素含量 27 3.6.1基本建構元素含量 27 3.6.2微量金屬元素含量 28 3.7 真蝦總目(Eucarida)體內元素含量 28 3.7.1基本建構元素含量 28 3.7.2微量金屬元素含量 29 3.8 游泳動物(Nekton)體內元素含量 30 3.8.1基本建構元素含量 30 3.8.2體內微量金屬元素含量 31 第四章 討論 62 4.1 種群結構差異 62 4.1.1基本建構元素 62 4.1.2微量元素 63 4.2 浮游動物體內微量元素累積現象 65 4.3 食物鏈中微量元素累積現象 67 4.3.1微量元素在食階上的變化 67 4.3.2浮游動物體內微量元素的生物放大作用 69 第五章 結論 88 參考文獻 89 | |
dc.language.iso | zh-TW | |
dc.title | 西菲律賓海浮游動物類群間元素含量變化 | zh_TW |
dc.title | Interspecies Variation of Element Concentrations in Marine Zooplanktons of the Western Philippine Sea | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅文增(Wen-Tseng Lo),蕭仁傑(Jen-Chieh Shiao) | |
dc.subject.keyword | 浮游動物,微量元素,西菲律賓海,類群,食階, | zh_TW |
dc.subject.keyword | zooplankton,trace element,the western Philippine Sea,Interspecies,trophic level, | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-02-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。