請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51417
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李清勝(Cheng-Shang Lee) | |
dc.contributor.author | Jen-Wei Liu | en |
dc.contributor.author | 劉人瑋 | zh_TW |
dc.date.accessioned | 2021-06-15T13:33:31Z | - |
dc.date.available | 2016-03-08 | |
dc.date.copyright | 2016-03-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-01 | |
dc.identifier.citation | 1.李清勝,1988:颱風之生成和發展。大氣科學,16,237-252。
2.張保亮、李天浩,2009:颱風路徑與侵臺颱風伴隨風雨預報技術之發展--子計畫:颱風都卜勒速度觀測與地面風力關係之研究及都卜勒風場反演之作業化(II),行政院國家科學委員會研究報告,NSC 97-2625-M-052-005,48頁。 3.張保亮,2010:颱風路徑與侵臺颱風伴隨風雨預報技術之發展--子計畫:颱風都卜勒速度觀測與地面風力關係之研究及都卜勒風場反演之作業化(III),行政院國家科學委員會研究報告,NSC98-2625-M052-005,21 頁。 4.Bessho, K., T. Nakazawa, S. Nishimura, and K. Kato, 2010: Warm core structures in organized cloud clusters developing or not developing into tropical storms observed by the Advanced Microwave Sounding Unit. Mon. Wea. Rev., 138, 2624-2643. 5.Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 2662-2682. 6.Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 1979-2013. 7.Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353-376. 8.Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 1859-1881. 9.Davis, C., and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100-1124. 10.Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107. 11.Dunkerton, T. J., M. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587-5646. 12.Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700. 13.——, 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37-69. 14.Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787. 15.Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38-31-38-34. 16.Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209-1232. 17.Hennon, C. C., and Coauthors, 2013: Tropical cloud cluster climatology, variability, and genesis productivity. J. Climate, 26, 3046-3066. 18.Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. 19.Houze Jr, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196. 20.——, 2004: Mesoscale convective systems. Rev. Geophys., 42. 21.——, W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 2778-2800. 22.Lee, C. S., 1989a: Observational analysis of tropical cyclogenesis in the western North Pacific. Part I: Structural Evolution of Cloud Clusters. J. Atmos. Sci., 46, 2580-2598. 23.——, 1989b: Observational analysis of tropical cyclogenesis in the western North Pacific. Part II: Budget analysis. J. Atmos. Sci., 46, 2599-2616. 24.——, Y.-L. Lin, and K. K. Cheung, 2006: Tropical cyclone formations in the South China Sea associated with the mei-yu front. Mon. Wea. Rev., 134, 2670-2687. 25.——, K. K. Cheung, J. S. Hui, and R. L. Elsberry, 2008: Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136, 2006-2022. 26.Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959-971. 27.Lilly, D. K., 1986: The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43, 126-140. 28.Markowski, P., and Y. Richardson, 2011: Mesoscale meteorology in midlatitudes. Vol. 2, John Wiley & Sons. 29.Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res.: Atmos. (1984–2012), 102, 16663-16682. 30.Montgomery, M., M. Nicholls, T. Cram, and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355-386. 31.Montgomery, M., L. Lussier III, R. Moore, and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment–Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 9879-9900. 32.Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis. Aust. Meteor. Mag., 56, 241. 33.Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., Elsevier, 445-454. 34.Raymond, D. D., C. López‐Carrillo, and L. L. Cavazos, 1998: Case‐studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 2005-2034. 35.Raymond, D., and C. López Carrillo, 2011: The vorticity budget of developing typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147-163. 36.Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3-22. 37.Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 3151-3171. 38.Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 1377-1396. 39.——, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027-2043. 40.Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961-976. 41.——, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555-574. 42.Simpson, J., E. Ritchie, G. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 2643-2661. 43.Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci, 4, 35-72. 44.Teng, H. F., C. S. Lee, and H. H. Hsu, 2014: Influence of ENSO on formation of tropical cloud clusters and their development into tropical cyclones in the western North Pacific. Geophys. Res. Lett., 41, 9120-9126. 45.Tory, K., M. Montgomery, N. Davidson, and J. Kepert, 2006: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of Tropical Cyclone Chris formation. J. Atmos. Sci., 63, 3091-3113. 46.Tory, K. J., R. Dare, N. Davidson, J. McBride, and S. Chand, 2013: The importance of low-deformation vorticity in tropical cyclone formation. Atmos. Chem. Phys., 13, 2115-2132. 47.Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 2433-2451. 48.Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273-294. 49.Yeh, H.-C., and Y.-L. Chen, 2003: Numerical simulations of the barrier jet over northwestern Taiwan during the Mei-Yu season. Mon. Wea. Rev., 131, 1396-1407. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51417 | - |
dc.description.abstract | 桔梗颱風(2013)為少數在臺灣附近形成之個案;本研究之目的在分析桔梗初始渦旋之形成和發展成熱帶氣旋之過程,並探討康芮颱風(2013)殘餘之中層渦旋在桔梗初始渦旋形成過程所扮演的角色。
分析觀測資料與雙都卜勒反演風場之結果顯示,康芮颱風侵臺時受環境強垂直風切影響而有高低層環流分離情形;低層環流中心沿臺灣東部近海往北移動,而中高層環流中心則向西北移動,經過中央山脈後在臺灣海峽滯留並減弱。受康芮中高層殘餘渦旋影響,海峽地區之中高層渦度明顯大於低層者;在桔梗初始渦旋形成前,海峽上出現強且長延時之線狀對流系統,其中並似伴隨有數個渦度熱塔(vortical hot tower, VHT)。桔梗初始渦旋於海峽建立後,其中層環流東移過山,並與臺灣東北部的低層低壓垂直重整,發展為桔梗颱風。 本研究利用Weather Research and Forecasting Model (WRF)進行模擬與分析,探討桔梗初始渦旋於海峽之形成和發展過程。結果顯示在桔梗初始渦旋形成之前,臺灣海峽附近持續有間歇性的對流出現,並伴隨中低層位渦之形成;中層位渦在康芮殘留的中層環流中合併、增強。初始渦旋形成期間,一低層風切線於浙江福建沿海建立,其西南端並有一正位渦擾動形成,此擾動隨後往海峽中央移動;當其移至康芮殘留之中層環流下時,形成一旋轉性強的中低層位渦柱(中低層低壓系統)。當低層低壓東移至海峽中央時,其東側的西南風受臺灣地形影響形成低層噴流(barrier jet)。低壓南側的西風與西南風合流,一狹長輻合區由近系統中心往南延伸,並伴隨有具數個VHTs的線狀對流系統發展;此線狀對流亦同時增強輻合區的西風與西南風,其產生之位渦亦能有效的平流至系統中心,此系統因而於臺灣海峽上快速增強,形成桔梗颱風之初始渦旋。地形敏感度實驗顯示,若移除臺灣地形,上述線狀對流不會產生,桔梗之初始渦旋亦不會於海峽形成。 | zh_TW |
dc.description.abstract | Tropical Storm Toraji (2013) is one of the few tropical cyclones (TCs) that formed near Taiwan. Purpose of this study is to analyze the formation and development process of the incipient vortex of Toraji. The influence of the mid-level remnant vortex of Kong-Rey (2013) on the formation of Toraji’s incipient vortex will also be discussed.
As revealed by the Dual Doppler radial winds and the ECMWF high-resolution reanalysis (ERA-interim, at 0.125∘ resolution), a decoupling of the lower-level and upper-level centers of Kong-Rey occurred on 29 August 2013 due to the strong vertical wind shear. The low-level circulation center kept moving northward, while the mid-upper lever circulation center moved northwestward, crossing the central mountain range (CMR) of Taiwan to over the Taiwan Strait. An area with mid-high level high positive vorticity existed at the Taiwan Strait for 2 days (29-30 August). Before the formation of Toraji’s incipient vortex on 00 UTC, 31 August, a line convection with several vortical hot towers appeared at the Taiwan Strait. A barrier jet caused by the southwesterlies and Taiwan topography is also observed. The mid-level circulation of the incipient vortex then moved eastward, crossing the CMR. TC Toraji formed after the coupling of the mid-level circulation with the low-level low pressure located to the east of CMR. The formation and development process of Toraji’s incipient vortex was simulated and analyzed using WRF model. Results show that a low-level potential vorticity (PV) core formed at the southwest extremity of a shear line located along the east coast of China before the formation of the incipient vortex. The low-level PV core then moves eastward to over the Taiwan Strait and couples with the mid-level PV core (Kong-Rey’s remnant) and a surface low pressure system forms. A convergent zone with embedded line convection occurs from near the PV core extending southwestward, resulting in the formation of the incipient vortex. The convergent zone is triggered by the westerly winds located to the south of the low pressure system and the barrier jet caused by the Taiwan topography. Thefore, the remnant of Kong-Rey’s mid-level circulation might have created a favorable environment for the formation of Toraji’s incipient vortex. Results of terrain-sensitivity experiments show that no incipient vortex will form if the Taiwan topography is removed in the simulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:33:31Z (GMT). No. of bitstreams: 1 ntu-105-R01229025-1.pdf: 18753071 bytes, checksum: afc5ec33d1d396f9ec70ed42d94c0d8a (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝......i
摘要......ii Abstract......iii 圖目錄......vi 表目錄......xii 第一章 前言......1 1.1 文獻回顧......1 1.2 研究動機與目的......6 第二章 桔梗形成初期之觀測資料分析......8 2.1 觀測資料介紹......8 2.2 桔梗初始渦旋形成期間之環流特徵......9 2.3 桔梗初始渦旋形成過程之對流特徵......13 2.4 小結......15 第三章 桔梗初始渦旋數值模擬之分析與校驗......17 3.1 模式簡介......17 3.2 模式設定......18 3.3 模式模擬結果之校驗......18 3.4 小結......21 第四章 桔梗初始渦旋形成過程之模擬與分析......22 4.1 綜觀環境及中尺度系統之演變......22 4.1.1 三維環流、對流及位渦之演變......23 4.1.2 海峽初始渦旋之結構演變......27 4.1.3 海峽之熱力環境分析......29 4.2 臺灣海峽之對流系統分析......30 4.2.1 關鍵對流形成機制及特徵......30 4.2.2 臺灣地形對桔梗形成之影響......32 4.3 小結......33 第五章 討論與總結......36 5.1 討論......36 5.2 結論......39 5.3 未來展望......41 參考文獻......43 | |
dc.language.iso | zh-TW | |
dc.title | 熱帶氣旋於臺灣附近形成之個案分析-以桔梗颱風(2013)為例 | zh_TW |
dc.title | A Case Study of Tropical Cyclone Formation near Taiwan: Toraji (2013) | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 呂國臣(Kuo-Chen Lu) | |
dc.contributor.oralexamcommittee | 郭鴻基(Hung-Chi Kuo),楊明仁(Ming-Jen Yang) | |
dc.subject.keyword | 熱帶氣旋,初始渦旋,熱帶氣旋形成,臺灣地形, | zh_TW |
dc.subject.keyword | tropical cyclone (TC),incipient vortex,TC formation,Taiwan topography, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-02-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 18.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。