Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51414
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙坤茂
dc.contributor.authorPO-TING LINen
dc.contributor.author林柏廷zh_TW
dc.date.accessioned2021-06-15T13:33:24Z-
dc.date.available2018-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-01
dc.identifier.citation[1] H.J. Bandelt, Networks with Condorcet solutions, Eur. J. Oper. Res. 20 (1985), pp.
314–326.
[2] S. Barberà and C. Beviá, Self-selection consistent functions, J. Econom. Theory 105
(2002), pp. 263–277.
[3] S. Barberà and C. Beviá, Locating public facilities by majority: Stability, Consistency and group formation, Games Econ. Behav 56 (2006), pp. 185–200.
[4] R.E. Burkard, et al., The obnoxious center problem on a tree, Technical Report 128,
Karl Franzens Universitaet Graz and Technische Universitaet Graz, Graz, Austria,
1998.
[5] L. Chen, et al., Condorcet winners for public goods, Ann. Oper. Res. 137 (2005), pp.
229–242.
[6] N. Christofides and P. Viola, The optimum location of multi-centres on a graph, Oper.
Res. Quart. 22 (1971), pp. 145–154.
[7] S.L. Hakimi, Optimum locations of switching centres and the absolute centres and
medians of a graph, Oper. Res. 12 (1964), pp. 450–459.
[8] Hajduková, J. Condorcet winner configurations of linear networks. Optimization,
59, (2010), pp. 461–475.
[9] P. Hansen and M. Labbé, Algorithms for voting and competitive location on a network, Trans. Sci. 22 (1988), pp. 278–288.
[10] P. Hansen and J.F. Thisse, Outcomes of voting and planning: Condorcet, Weber and
Rawls locations, J. Pub. Econom. 16 (1981), pp. 1–15.
[11] M. Labbé, Outcomes of voting and planning in single facility location problems, Eur.
J Oper. Res. 20 (1985), pp. 299–313.
[12] F.E. Maranzana, On the location of supply points to minimize transportation costs,
Oper. Res. Quart. 15 (1964), pp. 261–270.
[13] A. Tamir, Obnoxious facility location on graphs, SIAM J. Discrete Math. 4 (1991),
pp. 550–567.
[14] Wu, Y.-W., et al., Computing plurality points and Condorcet points in Euclidean
space. In: Proceedings of the International Symposium on Algorithms and Computation, (2013), pp. 688–698.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51414-
dc.description.abstractIn this thesis, we study the problem of locating k facilities under major voting criterion when all the voters are distributed along a real line. An optimal
solution to this problem is called a Condorcet winner configuration. Given a
placement of k facilities, there exists a fast algorithm to verify whether it is
an optimal solution or not [8]. We have found a missing in this algorithm and
filled the missing. According to this algorithm and our newly research results,
we propose an algorithm for finding an optimal solution. If k is a fixed value,
then our algorithm runs in linear time.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:33:24Z (GMT). No. of bitstreams: 1
ntu-105-R02922067-1.pdf: 634488 bytes, checksum: 3790fa36264495a8ec41d66eba8f7f13 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
1 Introduction 1
2 Preliminaries 3
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Necessary Conditions for Condorcet Winner . . . . . . . . . . . . . . . . 4
2.3 A Sufficient Condition for Condorcet Winner . . . . . . . . . . . . . . . 8
2.4 A Fast Verifying Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Finding Condorcet winner when k ≥ 2 19
3.1 Some Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Some Other Necessary Conditions . . . . . . . . . . . . . . . . . . . . . 21
3.3 Proper Similar Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 The Maximal Configuration of a Proper Similar Set . . . . . . . . . . . . 35
3.5 An Algorithm for Finding a Condorcet Winner . . . . . . . . . . . . . . 39
4 Concluding Remarks 43
Bibliography 44
dc.language.isoen
dc.subject最佳化zh_TW
dc.subject演算法zh_TW
dc.subject最佳化zh_TW
dc.subject演算法zh_TW
dc.subject多數決zh_TW
dc.subject多數決zh_TW
dc.subject設施設置問題zh_TW
dc.subject設施設置問題zh_TW
dc.subjectfacility location problemen
dc.subjectalgorithmsen
dc.subjectoptimizationen
dc.subjectmajority votingen
dc.subjectfacility location problemen
dc.subjectalgorithmsen
dc.subjectoptimizationen
dc.subjectmajority votingen
dc.title尋找直線上的多數決組合zh_TW
dc.titleFinding Condorcet Winner Configurations on a Real Lineen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王弘倫,朱安強
dc.subject.keyword設施設置問題,多數決,最佳化,演算法,zh_TW
dc.subject.keywordfacility location problem,majority voting,optimization,algorithms,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2016-02-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
619.62 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved