請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51391完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫在弘(Tzai-Hung Wen) | |
| dc.contributor.author | Ching-Shun Hsu | en |
| dc.contributor.author | 許景舜 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:32:38Z | - |
| dc.date.available | 2021-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-02 | |
| dc.identifier.citation | Anderson, R.-M., & May, R.-M., (1991) Infectious diseases of humans: dynamics and control. New York:Oxford University Press.
Rothman, K.-J., Greenland, S., & Lash, T.-L. (2008) Modern epidemiology. Lippincott Willians & Wilkins. Aiello, A.-E., Murray, G.-F., Perez, V., Coulbom, R.-M., Davis, B.-M., Uddin, M., Shay, D.-K., Waterman, S.-H., & Monto, A.-S. (2010) Mask use, hand hugiene, and seasonal influenza-like illness among young adults: a randomized intervention trial. Journal of Infectious Diseases 201(4), 491-498 Andersson, M., Gudmundsson, J., Laube, P., & Wolle, T. (2008) Reporting leaders and followers among trajectories of moving point objects. Geoinformatica 12, 497-528. Andrienko, N., & Andrienko, G. (2011) Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics 17,205-219. Bajardi, P., Poletto, C., Ramasco, J. J., Michele, T., Colizza, V., & Vespignani, A. (2011) Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic, PLoS ONE 6(1):e16591 Balcan, D., Goncalves, B., Hu, H., Ramasco, J. J., Colizza, V., & Vespignani A. (2010) Modeling the spatial spread of infectious disease: The Global Epidemic and Mobility computational Model. Journal of Computation Science 1(3),132-145 Bayham, J., Kuminoff, N. V., Gunn, Q., & Fenichel, E. P. (2015, November). Measured voluntary avoidance behaviour during the 2009 A/H1N1 epidemic. InProc. R. Soc. B (Vol. 282, No. 1818, p. 20150814). The Royal Society. Bitar, D., Goubar, A., & Desenclos, J. C. (2009) International travels and fever screening during epidemics: a literature review on the effectiveness and potential use of non-contact infrared thermometers. Euro Surveill, 14(6), 19115. Chen, S. C., You, S. H., Ling, M. P., Chio, C. P., & Liao, C. M. (2011) Use of seasonal influenza virus titer and respiratory symptom score to estimate effective human contact rates. Journal of Epidemiology 22(4),353-363 Chiu, W. T., Lin, P. W., Chiou, H. Y., Lee, W. S., Lee, C. N., Yang, Y. Y., Lee, H. M., Hsieh, M. S., Hu, C. J., Ho, Y. S., Deng, W. P., & Hsu, C. Y. (2005) Infrared thermography to mass-screen suspected SARS patients with fever. Asia-Pacific Journal of Public Health, 17(1), 26-28. Dong, W., Heller, K. A., & Pentland, A. S. (2012) Modeling infection with multi-agent dynamics. arXiv:1204.0168 Dons, E., Panis, L. I., Van Poppel, M., Theunis, J., & Wets, G. (2012) Personal exposure to black carbon in transport microenvironments.Atmospheric Environment, 55, 392-398. Dons, E., Panis, L. I., Van Poppel, M., Theunis, J., Willems, H., Torfs, R., & Wets, G. (2011) Impact of time–activity patterns on personal exposure to black carbon. Atmospheric Environment, 45(21), 3594-3602. Elgethun, K., Fenske, R.-A., Yost, M.-G., & Palcisko, G.-J. (2003) Time-location analysis for exposure assessment studies of children using a novel global positioning system instrument. Environ Health Perspect 111,115-215 Fang, T.-B., & Lu, Y. (2012) Personal real-time air pollution exposure assessment methods promoted by information technological advances. Annals of GIS 18,279-288 Fournet, J., & Barrat, A.(2014) Contact patterns among high school students. PLoS ONE 9(9): e107878 Funk, S., Gilad, E., Watkins, C., & Jansen, V. A. (2009) The spread of awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of Sciences, 106(16), 6872-6877. Funk, S., Salathé, M., & Jansen, V. A. (2010) Modeling the influence of human behaviour on the spread of infectious diseases: a review. Journal of the Royal Society Interface, 7(50), 1247-1256. Gerharz, L. E., Krüger, A., & Klemm, O. (2009) Applying indoor and outdoor modeling techniques to estimate individual exposure to PM2. 5 from personal GPS profiles and diaries: a pilot study. Science of the total environment,407(18), 5184-5193. Glass, L.-T., & Glass, R.-J. (2008) Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health 8(1), 61. Gonzalez, M.-C., Hidalgo, C.-A., & Barabasi, A.-L. (2008) Understanding individual human mobility patterns. Nature,453, 779-782 Haynes, E. N., Ryan, P., Chen, A., Brown, D., Roda, S., Kuhnell, P., ... & Reponen, T. (2012) Assessment of personal exposure to manganese in children living near a ferromanganese refinery. Science of the Total Environment, 427, 19-25. Hess, G., Randolph, S. E., & Ameberg, P. (2001) Spatial aspects of disease dynamics. Hudson, P. J., Rizzoli, A. P., Grenfell, B. T., Heesterbeek, J. A. P., Dobson, A. P. (Eds.), The Ecology of Wildlife Diseases, Oxford University Press, Oxford(2001), 102-118. Huang, C. Y., Sun, C. T., Hsieh, J. I., Chen, Y. M. A., & Lin, H. (2005) A novel small-world model: Using social mirror identities for epidemic simulations. Simulation, 81:671-699 Jarup, L. (2004) Health and environment information systems for exposure and disease mapping, and risk assessment. Environ Health Perspect 112(7),995-997 Keeling, M.-J., Danon, L., Vernon, M.-C., & House, T.-A. (2010) Individual identity and movement networks for disease metapopulations. PNAS,107:19 Kiss, I. Z. (2013) Incorporating human behaviour in epidemic dynamics: a modeling perspective. In Modeling the Interplay Between Human Behaviour and the Spread of Infectious Diseases. (pp.125-137). Springer New York Kwan, M.-P. (2009) From place-based to people-based exposure measures. Social Science & Medicine 69,1311-1313 Lee, B.-Y., Brown, S.-T., Cooley, P., Potter, M.-A., Wheaton, W.-D., Voorhees, R.-E., Stebbins, S., Grefenstette, J.-J., Zimmer, S.-M., Assi, T.-M., Bailey, R.-R., Wagener, D.-K., & Burke, D.-S. (2010) Simulating school closure strategies to mitigate an influenza epidemic. Journal of public health management and practice 16(3). 252 Leyk, S., Binder, C. R., & Nuckols, J. R. (2009) Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world. International Journal of Health Geographics, 8:17 Liebig, T., Xu, Z.,& May, M. (2013) Incorporating mobility patterns in pedestrian quantity estimation and sensor placement. In: Nin, J., Villatoro, D.(Eds.), Citizen in Sensor Networks. Springer-Verlag Berlin, Heidelberg. Lisa, S. (2009) The geographic spread of infectious diseases. Princeton: Princeton University Press. Liu, H. Y., Skjetne, E., & Kobernus, M. (2013) Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment. Environ. Health, 12, 93. Long, J. A.,& Nelson, T. A. (2012) A review of quantitative methods for movement data. International Journal of Geographical Information Science 27, 292-318. Meloni, S., Perra, N., Arenas, A., Gomez, S., Moreno, Y., & Vespignani, A.(2011) Modeling human mobility responses to the large-scale spreading of infectious diseases. Scientific Reports 1,62 Mercer, J. B., & Ring, E. F. J. (2009) Fever screening and infrared thermal imaging: concerns and guidelines. Thermology International, 19(3), 67-69. Mölter, A., Lindley, S., de Vocht, F., Agius, R., Kerry, G., Johnson, K., Ashmore, M., Terry, A., Dimitroulopoulou S., & Simpson, A. (2012) Performance of a microenviromental model for estimating personal NO 2 exposure in children. Atmospheric Environment, 51, 225-233. Ng, E. Y., Kawb, G. J. L., & Chang, W. M. (2004) Analysis of IR thermal imager for mass blind fever screening. Microvascular research, 68(2), 104-109. Nichol, K.-L., Tummers, K., Hoyer-Leitzel, A., Marsh, K., Moynihan, M., & McKelvey, S. (2010) Modeling seasonal influenza outbreak in a closed college campus: impact of pre-season vaccination, in-season vaccination and holidays/breaks. PLoS One 5(3), e9548 Nishiura, H., Ejima, K., Mizumoto, K., Nakaoka, S., Inaba, H., Imoto, S., Yamaguchi, R., & Saito, M. M. (2014) Cost-effective length and timing of school closure during an influenza pandemic depend on the severity. Theoretical Biology and Medical Modelling, 11(5). Nishiura, H., & Kamiya, K. (2011) Fever screening during the influenza (H1N1-2009) pandemic at Narita International Airport, Japan. BMC infectious diseases,11(1), 111. Nuckols J.-R., Ward, M.-H., & Jarup, L. (2004) Using geographic information systems for exposure assessment in environmental epidemiology studies. Environ Health Perspect 112(9),1007-1015. Perchoux, C., Chaxi, B., Cummins, S., & Kestens, Y. (2013) Conceptualization and measurement of environmental exposure in epidemiology: Accounting for activity space related to daily mobility. Health and Place, 21,86-93 Perra, N., Balcan, D., Gonçalves, B., & Vespignani, A. (2011) Towards a characterization of behavior-disease models. PloS one, 6(8), e23084. Perra N., & Vespignani, A. (2013) Modeling contact and mobility based social response to the spreading of infectious disease. In Modeling the Interplay Between Human Behaviour and the Spread of Infectious Diseases. (pp.103-123). Springer New York Potter, M. A., Brown, S. T., Phillp, C. C., Sweeney, P. M., Hershey, T. B., Gleason, S. M., Lee, B. Y., Keane, C. R., Grefenstette, J., & Burke, D. S. (2012) School closure as an influenza mitigation strategy: how variations in legal authority and plan criteria can alter the impact. BMC Public Health, 12:977 Potter, G.-E., Handcock, M.-S., Longini Jr, I.-M., & Halloran, M.-E. (2012) Estimating within-school contact networks to understand influenza transmission. The Annals of Applied Statistics 6(1),1-26. Priest, P. C., Duncan, A. R., Jennings, L. C., & Baker, M. G. (2011) Thermal image scanning for influenza border screening: results of an airport screening study. PLoS ONE 6(1), e14490. Qi, F., & Du, M. (2013) Tracking and visualization of space-time activities for a micro-scale flu transmission study. International Journal of Health Geographic 12:6. Rahmandad, H., & Sterman, J. (2008) Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Management Science, 54(5), 998-1014. Reniers, G., Armbruster, B., & Lucas, A. (2015) Sexual networks, partnership mixing, and the female-to-male ratio of HIV infections in generalized epidemics: An agent-based simulation study. Demographic Research, 33, 425-450. Riderhour, B. J., Braun, A., Terasse, T., & Goldsman, D. (2011) Controlling the spread of disease in schools. PLoS ONE; 6:e29640 Ring, E. F. J., McEvoy, H., Jung, A., Zuber, J., & Machin, G. (2010) New standards for devices used for the measurement of human body temperature. Journal of medical engineering & technology, 34(4), 249-253. Rodriguez, R. A., Brown, A. L., & Troped, P. J. (2005) Portable global positioning units to complement accelerometry-based physical activity monitors. Medicine and Science in Sports and Exercise 37, 572-581. Salathe, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W., & Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. PNAS,107:51. Samanlioglu, F., Bilge, A. H., & Ergonul, O. (2012) A susceptible-exposed-infected-removed (seir) model for the 2009-2010 A/H1N1 epidemic in Istanbul. arXiv preprint arXiv: 1205.2497 Setton, E., Marshall, J. D., Brauer, M., Lundquist, K. R., Hystad, P., Keller, P., & Cloutier-Fisher, D. (2011) The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. Journal of Exposure Science and Environmental Epidemiology, 21(1), 42-48. Shu, P. Y., Chien, L. J., Chang, S. F., Su, C. L., Kuo, Y. C., Liao, T. L., Ho, M. S., Lin, T. H., & Huang, J. H. (2005) Fever screening at airports and imported dengue. Emerg Infect Dis, 11(3), 460-2. Sider, T., Alam, A., Zukari, M., Dugum, H., Goldstein, N., Eluru, N., & Hatzopoulou, M. (2013) Land-use and socio-economics as determinants of traffic emissions and individual exposure to air pollution. Journal of Transport Geography, 33, 230-239. Srinivasan V., Motani, M., Ooi, W. T. (2006) Analysis and implications of student contact patterns derived from campus schedules. Proceedings of the 12th annual international conference on Mobile computing and networking. 86-97 Stoddard, S.-T., Morrison, A.-C., Vazquez-Prokopec, G.-M., Paz Soldan, V., Kochel, T.-J., Kitron, U., Elder, J.-P., & Scott, T.-W. (2009) The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis. 3(7):e481 Stehle, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., Quaggiotto, M., Van den Boreck, W., Regis, C., Lina, B., & Vanhems, P. (2011) High-resolution measurements of face-to-face contact patterns in a primary school. PLOS ONE 6(8): e23176 Steinle, S., Reis, S., & Sabel, C. E. (2011) Assessment of personal exposure to air pollutants in Scotland – an integrated approach using personal monitoring data. In MODSIM. Steinle, S., Reis, S., & Sabel, C. E. (2013) Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment. Science of the Total Environment, 443, 184-193. Steinle, S., Reis, S., Sabel, C. E., Semple, S., Twigg, M. M., Braban, C. F., Leeson, S. R., Heal, M. R., Harrison, D., Lin, C., & Wu, H. (2015). Personal exposure monitoring of PM 2.5 in indoor and outdoor microenvironments. Science of the Total Environment, 508, 383-394. Thierry, B., Chaix, B., & Kestens, Y. (2013) Detecting activity locations from raw GPS data: a novel kernel-based algorithm. International Journal of Health Geographic 12:14. Tracey, J. A., Bevins, S. N., VandeWoude, S., & Crooks, K. R. (2014) An agent-based movement model to assess the impact of landscape fragmentation on disease transmission. Ecosphere, 5(9), art119. Tsai, Y. S., Huang, C. Y., Wen, T. H., Sun, C. T., & Yen, M. Y. (2010) Integrating epidemic dynamics with daily commuting networks: buildings a multilayer framework to assess influenza A (H1N1) intervention policies. Simulation: Transcations of the Sociert for Modeling and Simulation International, 87(5):385-405 Vazquez-Prokopec, G.-M., Bisamzio, D., Stoddard, S.-T., Paz-Solden, V., Morrison, A.-C., Elder, J.-P., Ramirez-Paredes, J., Halsey, E.-S., Kochel, T.-J., Scott, T.-W., & Kitron, U. (2013) Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS ONE. 8:e58802. Wang, C. H. (2013) Transmission dynamics and infection risk assessment of indoor influenza droplets. Master’s thesis, Department of Bioenvironmental Systems Engineering College of Bio-Resources and Agriculture, National Taiwan University, Taipei. Wang, S. W., Tang, X., Fan, Z. H., Wu, X., Lioy, P. J., & Georgopoulos, P. G. (2009) Modeling of personal exposures to ambient air toxics in Camden, New Jersey: an evaluation study. Journal of the Air & Waste Management Association ,59(6),733-746. Warren, J.-M., Ekelund, U., Besson, H., Mezzani, A., Geladas, N., & Vanhees, L. (2010) Assessment of physical activity – a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. European Journal of Cardiovascular Prevention & Rehabilitation 17, 127-139. Wheeler, C.-C., Erhart, L.-M., & Jehn, M.-L. (2010) Effect of school closure on the incidence of influenza among school-age children in Arizona. Public Health Reports 125(6), 851 Weis, B.-K., Balshaw, D., Barr, J.-R., Brown, D., Ellisman, M., Lioy, P., Omenn, G., Potter, J.-D., Smith, M.-T., Sohn, L., Suk, W.-A., Sumner, S., Swenberg, J., Walt, D.-R., Watkins, S., Thompson, C., & Wilson, S.-H. (2005) Personalized exposure assessment: Promising approaches for human environmental health research. Environmental Health Perspectives 113(7),840-848 Wen, T. H., & Chin, W. C. B. (2015) Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus. International journal of environmental research and public health, 12(4), 4170-4184. Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., & Buckee, C. O. (2012) Quantifying the impact of human mobility on malaria. Science,338, 267-270. Wu, Q., Fu, X., Small, M., & Xu, X. J. (2012) The impact of awareness on epidemic spreading in networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(1), 013101. Zhao, B., Zhang, Y., Li, X., Yang, X., & Huang, D., (2004) Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Building and Environment 39,1-8 Zhao, S., Wu, J., & Ben-Arieh, D. (2014) Modeling infection spread and behavioural change using spatial games. Health System,1-13 世界民報全球資訊網 (2012)。流感防疫 應從改善「室內空氣品質」做起。 http://www.worldpeoplenews.com/news/16/2012-01/19816(擷取日期:2015.4.7) 行政院衛生福利部疾病管制局 (2015)。新型A型流感。 http://www.cdc.gov.tw/diseaseinfo.aspx?treeid=8D54C504E820735B&nowtreeid=DEC84A2F0C6FAC5B&tid=6CB2EE526856976F (擷取日期:2015.4.7) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51391 | - |
| dc.description.abstract | 人口移動行為是影響傳染病中,人類與病媒接觸、暴露的重要影響因子,因此差異化不同個體之間接觸與暴露的程度,是重要的研究課題。近年的研究趨勢係以高解析度的定位裝置進行個人活動行為的資料收集,進行基於個人的環境汙染物暴露評估,或探討個體行為的差異對疾病傳播的影響等。然而,以傳染病擴散模式進行個人化的健康風險評估,尚未有清楚的學術討論。因此,本研究目的在於架構個人化的疾病暴露風險評估模式,以此評估在傳染病爆發的環境下,個體的移動行為所導致的暴露感染機率,進行個人化的傳染病暴露風險評估。
本研究將發展個人化傳染病傳播的暴露風險評估的系統架構,將分為:一、以開發智慧型手機應用程式作為個人端的風險管理介面,進行個人行為資訊的收集以及環境風險分布、個人風險指標等疫情資訊等資訊傳遞的功能;二、透過傳染病數學模式的建立,模擬在校園爆發呼吸道傳染病的群聚感染疫情,並將個人的行為資訊與傳染病傳播風險分布整合分析,進行個人化的傳染病暴露風險評估。本研究以國立台灣大學公館校區的環境進行試作,建立校園傳染病傳播的分析模式,以修課資料庫中學生的修課行為描述校園教學大樓的網絡關係,建立傳染病擴散分析模式,模擬傳染病於校園教學大樓間傳播的過程與風險分布。另一方面,整合學生個人的修課與移動行為進行傳染病暴露風險評估,並進一步討論學生修課行為特性、知曉疫情的行為改變機制與個人暴露風險之間的關係。 藉由建立個人傳染病傳播的暴露風險評估架構,本研究得以進一步探討行為與個人傳染病風險暴露之間的關係,研究發現在集中的行為特性下,個人的傳染病風險較低,例如將課程安排在少數幾天而非均勻地安排在一週;另一方面,在行為改變機制上發現請假的行為機制對於個人的傳染病風險有降低的效果,但對於整體疫情傳播速度與嚴重程度的抑制效果則需要在多數學生都採取請假措施時才得以彰顯。 在防疫概念上,本研究的發現在傳染病爆發時,對於個人行為的安排能提供概略性的方向,對於權責單位則需宣導學生衛生與防疫意識。在模式建構上,此系統架構提供了行為改變的相關研究進行實證分析的視野,希冀未來資通訊技術更加蓬勃發達時能進行實際應用。 | zh_TW |
| dc.description.abstract | Human mobility is an important risk factor affecting disease transmission. Therefore, understanding detailed spatial behaviors and interactions among individuals is a fundamental issue. Past studies using high-resolution human contacts data from smart phones with GPS logs have captured spatial-temporal heterogeneity and daily contact patterns among individuals. However, measuring personalized exposed risk of infectious disease transmission is still under development. The purpose of the study is to establish a framework for assessing personalized exposed risk of infectious disease transmission.
The framework consists of two components: the first is client-side smart phone-based risk assessment module. We developed Android application for collecting individual mobility data and displaying the personalized exposed risk score. The second component is the server-side epidemic simulation model. The simulation model calculated the personalized exposed risk score based on individual mobility data from the client-side Android application. We used NTU main campus as a pilot study to demonstrate the feasibility of the framework. We analyzed the records of students’ taking course and modeled the spatial interaction relationships among classroom buildings due to students’ mobility around the campus. Each student who installed the client-side risk assessment module in his/her smart phone receives the real-time personalized exposed risk score when an epidemic outbreak on the NTU campus. Furthermore, we explored the relationships between personalized exposed risk score and course taking behaviors including a simple behavior change mechanism. The study proposed a framework for measuring real-time personalized exposed risk. Each student at the campus could understand the spatial diffusion of disease transmission and make better spatial decisions based on personalized exposed risk scores to avoid getting infectious diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:32:38Z (GMT). No. of bitstreams: 1 ntu-105-R02228008-1.pdf: 5811807 bytes, checksum: 4487aeccb52ae7773d8a49d809d616e5 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 第二章 文獻回顧 6 第一節 個人化的環境暴露研究架構與應用 7 第二節 個人行為資料的收集與分析 9 第三節 環境風險分布–考量人群移動行為的傳染病擴散分析 12 第四節 因應傳染病傳播的個人行為改變機制 14 第五節 小結 16 第三章 研究方法 17 第一節 個人化疾病暴露風險評估的決策支援系統架構 17 第二節 校園環境的傳染病擴散分析模式 19 一、校園教學大樓間的學生流動網絡 19 二、多層次時空網絡結構的傳染病擴散分析模式 21 第三節 個人風險管理應用程式 25 一、服務註冊 25 二、行為紀錄 25 三、個人化傳染病暴露風險評估 26 第四節 個人行為改變的機制與模擬 28 第四章 研究結果 31 第一節 模式應用 32 一、使用端的學生風險查詢情境 32 二、分析端的校園防疫權責單位使用情境 33 第二節 行為特性與個人風險 37 第三節 行為改變對疫情傳播與個人風險之影響 42 第四節 起始爆發點的敏感度分析 47 第五節 小結 51 第五章 討論 52 第一節 系統實作與互動 52 第二節 行為與風險 55 第三節 校園防疫 58 第四節 架構延伸與應用 59 一、個人行為改變的機制 59 二、防疫權責單位擬定的防疫策略 60 三、評估架構的其他案例研究 60 第五節 研究限制 62 第六章 結論 63 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 決策支援 | zh_TW |
| dc.subject | 傳染病擴散 | zh_TW |
| dc.subject | 個人化暴露風險評估 | zh_TW |
| dc.subject | 行為改變 | zh_TW |
| dc.subject | 人口移動 | zh_TW |
| dc.subject | 傳染病擴散 | zh_TW |
| dc.subject | 個人化暴露風險評估 | zh_TW |
| dc.subject | 決策支援 | zh_TW |
| dc.subject | 行為改變 | zh_TW |
| dc.subject | 人口移動 | zh_TW |
| dc.subject | decision making | en |
| dc.subject | behavior change | en |
| dc.subject | human mobility | en |
| dc.subject | infectious diseases | en |
| dc.subject | human mobility | en |
| dc.subject | decision making | en |
| dc.subject | behavior change | en |
| dc.subject | personalized exposure assessment | en |
| dc.subject | infectious diseases | en |
| dc.subject | personalized exposure assessment | en |
| dc.title | 建立傳染病傳播的個人暴露風險評估架構 | zh_TW |
| dc.title | A framework for assessing personalized exposure risk of infectious disease transmission | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 方啟泰(Chi-Tai Fang),黃崇源(Chung-Yuan Hung) | |
| dc.subject.keyword | 傳染病擴散,個人化暴露風險評估,決策支援,行為改變,人口移動, | zh_TW |
| dc.subject.keyword | infectious diseases,personalized exposure assessment,behavior change,decision making,human mobility, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
