Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51389
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉家瑄(Char-Shine Liu)
dc.contributor.authorKang-Hao Yuen
dc.contributor.author余康豪zh_TW
dc.date.accessioned2021-06-15T13:32:34Z-
dc.date.available2017-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-02
dc.identifier.citationBriais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B4), 6299-6328.
Clay, C. S., & Rona, P. A. (1965). Studies of seismic reflections from thin layers on the ocean bottom in the western North Atlantic. Journal of Geophysical Research, 70(4), 855-869.
Dix, C. (1955). Seismic velocities from surface measurements. Geophysics, 20, 68-86.
Houtz, R., Ewing, J., & Buhl, P. (1970). Seismic data from sonobuoy stations in the northern and equatorial Pacific. Journal of Geophysical Research, 75(26), 5093-5111.
Hamilton, E. L. (1970). Sound velocity and related properties of marine sediments, North Pacific. Journal of Geophysical Research, 75(23), 4423-4446.
Hamilton, E. L., Moore, D. G., Buffington, E. C., Sherrer, P. L., & Curray, J. R. (1974). Sediment velocities from sonobuoys: Bay of Bengal, Bering sea, Japan sea, and North Pacific. Journal of Geophysical Research, 79(17), 2653-2668.
Hamilton, E. L. (1980). Geoacoustic modeling of the sea floor. The Journal of the Acoustical Society of America, 68(5), 1313-1340.
Hamilton, E. L., & Bachman, R. T. (1982). Sound velocity and related properties of marine sediments. The Journal of the Acoustical Society of America, 72(6), 1891-1904.
Hamilton, E. L. (1985). Sound velocity as a function of depth in marine sediments. The Journal of the Acoustical Society of America, 78(4), 1348-1355.
Knott, S. T., & Hoskins, H. (1975). Collection and analysis of seismic wide angle reflection and refraction data using radio sonobuoys. Unknown, 1.
Laughton, A. S. (1954, March). Laboratory measurements of seismic velocities in ocean sediments. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 222, No. 1150, pp. 336-341). The Royal Society.
Le Pichon, X., Ewing, J., & Houtz, R. E. (1968). Deep‐sea sediment velocity determination made while reflection profiling. Journal of Geophysical Research,73(8), 2597-2614.
Lester, R., Lavier, L. L., McIntosh, K., Van Avendonk, H. J., & Wu, F. (2012). Active extension in Taiwan’s precollision zone: A new model of plate bending in continental crust. Geology, 40(9), 831-834.
Li, C. F., Zhou, Z., Li, J., Chen, B., & Geng, J. (2008). Magnetic zoning and seismic structure of the South China Sea ocean basin. Marine Geophysical Researches, 29(4), 223-238.
Li, C. F., et al. (2015). Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 120(3), 1377-1399.
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
Lin, C. C., Lin, A. T. S., Liu, C. S., Horng, C. S., Chen, G. Y., & Wang, Y. (2014). Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research, 35(1), 21-35.
Musgrave A. W. (1962) Applications of the expanding reflection spread. Geophysics, 27, 981-993.
Parasnis, D. S. (1960). The compaction of sediments and its bearing on some geophysical problems. Geophysical Journal International, 3(1), 1-28.
Sheriff, R. E., & Geldart, L. P. (1983). Exploration seismology. Volume 1: History, theory, and data acquisition.
Taner, M. T., & Koehler, F. (1969). Velocity spectra-digital computer derivation applications of velocity functions. Geophysics, 34(6), 859-881.
Taylor, B., & Hayes, D. E. (1983). Origin and history of the South China Sea basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, 23-56.
Wang, P., Prell, W.L., Blum, P., et al., (2000). Proc. ODP, Init. Repts., 184: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.184.2000
Wu, S., Wang, X., Wong, H. K., & Zhang, G. (2007). Low-amplitude BSRs and gas hydrate concentration on the northern margin of the South China Sea. Marine Geophysical Researches, 28(2), 127-138.
Yilmaz, Ö. (2001). Seismic data analysis (Vol. 1, pp. 74170-2740). Tulsa, OK: Society of exploration geophysicists.
Zelt, C. A., & Smith, R. B. (1992). Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical journal international, 108(1), 16-34.
潘玉生、陳讚煌、鍾火盛及游銘銳.(1992) 震測資料之認識與解釋.中國石油股份有限公司 海域及海外石油探勘處和中國地球物理學會。1-280.
黃寶賢. (1998). 比較反射及折射震波速度分析方法並探討台灣西南海域沉積物震波速度特性。臺灣大學海洋研究所學位論文, 1-62.
陳政儀. (2009). 東沙島以南大陸邊緣構造及沉積物分布之探討. 臺灣大學海洋研究所學位論文, 1-66.
蔡佑聰. (2010). 利用 P 波速度修正地溫梯度與天然氣水合物穩定帶底部深度. 臺灣大學海洋研究所學位論文, 1-85.
范美琪. (2012). 南沖繩海槽上部地殼的速度構造. 臺灣大學海洋研究所學位論文, 1-98.
洪健桓. (2012). 由長支距震測資料比較截距時間-波線參數及速度頻譜速度分析方法. 臺灣大學海洋研究所學位論文, 1-80.
謝宗霖. (2013). 利用反射震測探討南海東北部被動大陸邊緣地形與構造特徵. 臺灣大學海洋研究所學位論文, 1-87.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51389-
dc.description.abstract傳統上要了解海洋沉積物的各項物理性質,是透過岩心取樣或鑽井等直接測量的方式,現今我們可以透過分析地震波的反射訊號來觀察沉積物的性質。本研究利用多頻道反射震測系統蒐集四條橫跨南海北坡被動大陸邊緣的測線,使用速度頻譜法分析海洋沉積物的震波速度,最後將層間速度與單程走時迴歸,探討不同沉積環境的震波速度特徵。利用地形特徵將研究區域分成大陸斜坡、下部斜坡與海盆三種環境,研究結果顯示,水平方向上的速度變化較平緩,大致隨著地質構造的分佈而改變其速度構造;垂直方向上的速度則隨著深度增加而變快。將速度構造之數值取出內插後,以層間速度為Y軸、海床下沉積物單程走時為X軸做速度曲線圖,使用線性迴歸求取速度函數,發現在三種區域的速度曲線不盡相同,大陸斜坡的速度分佈範圍較廣,解釋是由於沉積速率快,且有觀察到許多崩塌現象,導致沉積物結構較鬆散;在下部斜坡與海盆之速度曲線集中,說明在地層中沉積物未受到太大的擾動。透過迴歸方式,可將這些速度特徵以二次式表示,分別為大陸斜坡:V=1511+2003t-20.342t^2;下部斜坡:V=1511+2373.8t-406.18t^2;海盆:V=1511+2111.2t-146.77t^2。速度函數可以幫助我們了解該區域的走時與速度之間的關係也可以提供相同區域的震測測線做時-深轉換的依據,由函數的係數也可以觀察到在大陸斜坡速度有較慢的上升趨勢,而下部斜坡上升的最劇烈。此外為評估速度分析的準確度,本研究利用ODP site1148鑽井資料比對速度分析的結果,發現其層間速度隨地層上升的趨勢相當接近,說明使用速度頻譜法分析海底沉積物之震波速度是可行的方式。zh_TW
dc.description.abstractP-wave velocity is an important physical property of marine sediments, it also plays an important role in seismic data processing. Traditionally, we obtain physical properties of marine sediments by direct measurements of cored samples, but most of such samples come from very shallow sediments beneath seafloor, except where samples from deep sea drilling investigation are available. In order to obtain P-wave velocity information of sedimentary strata at depth, seismic velocity analysis techniques are often used. This study presents a summary of P-wave velocities of the sediments in the Northern South China Sea (NSCS) continental margin. Data from 2-D multichannel seismic reflection surveys are analyzed, using velocity spectrum analysis (VSPEC) technique to derive interval velocities in marine sediments. Through careful VSPEC, we can build a velocity model along the seismic profile which reveals velocity variations in the study area. We establish the characters of P-wave velocities for 3 geological provinces in NSCS: continental slope, lower slope, and ocean basin. The characters of depth relationship are usually presented in the form of equations relating interval velocity V with one way travel time t. The following relations are established for each of the 3 geological provinces: in the lower slope of NSCS-: V=1511+2373.8×t-406.18×t^2; in the Northwest Subbasin of NSCS: V=1511+2111.2×t-146.77×t^2; in the continental slop area of NSCS: V=1511+2003×t-20.342×t^2. In addition, we compared our velocity analysis results with those derives from logging data of the ODP site 1148 located in the Northwest Subbasin of NSCS. At site 1148, four seismic horizons from Pleistocene to Oligocene can be recognized, and so are our results from VSPEC. The velocity information from core data are in consistent with the velocity information derived from seismic data in this study.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:32:34Z (GMT). No. of bitstreams: 1
ntu-105-R02241309-1.pdf: 4609980 bytes, checksum: 53658807ef88e320a12551be60421b85 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1震波速度扮演的角色 1
1-2海洋沉積物之研究 2
1-3研究區域背景 3
1-4研究動機與目的 4
1-5論文架構 5
第二章 震測資料與速度分析 13
2-1震測與速度分析 13
2-1-1震測資料蒐集 13
2-1-2震測與速度分析 13
2-2速度頻譜法 14
2-2-1反射震測走時曲線 14
2-2-2速度頻譜 17
2-2-3速度頻譜法分析地層速度 17
第三章 資料來源與處理過程 22
3-1資料來源 22
3-2反射震測資料處理流程 23
3-3速度迴歸 27
第四章 結果與討論 34
4-1速度模型與震測剖面展示 34
4-1-1 MCS1036-1 34
4-1-2 MCS963-1a 35
4-1-3 MCS963-3 36
4-1-4 MCS999-6 36
4-2速度分析與ODP井位比較 37
4-3被動大陸邊緣及西北次海盆速度構造特徵 38
4-3-1 海盆之速度特徵 39
4-3-2 大陸斜坡之速度特徵 40
4-3-3 下部斜坡之速度特徵 41
4-4 速度函數 42
4-4-1速度函數代表的意義 42
4-4-2沉積環境與速度的關係 44
4-4-3臨近區域的速度函數比較 45
第五章 結論 68
參考文獻 70
dc.language.isozh-TW
dc.title南海北坡被動大陸邊緣海底沉積層之震波速度特性zh_TW
dc.titleP-wave Velocity of Marine Sedimentary Layers in the Northern South China Sea Continental Marginen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇志杰(Chih-Chieh Su),戚務正(Wu-Cheng Chi),林殿順(Tien-Shun Lin)
dc.subject.keyword震波速度,速度分析,速度頻譜法,速度函數,南海被動大陸邊緣,zh_TW
dc.subject.keywordInactive continental margin of Northern South China Sea,Sound velocity,velocity spectrum analysis,velocity function,velocity analysis,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2016-02-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved