Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富(Jean-Fu Kiang)
dc.contributor.authorTzu-Chuan Huangen
dc.contributor.author黃子娟zh_TW
dc.date.accessioned2021-06-15T13:32:27Z-
dc.date.available2018-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-02
dc.identifier.citation[1] M. Yamada, R. Kulsrud, and H. Ji, “Magnetic reconnection,” Rev. Modern Phys., vol.82, pp.603-664, 2010.
[2] M. Oieroset, T. D. Phan, J. P. Eastwood, M. Fujimoto, W. Daughton, M. A. Shay, V. Angelopoulos, F. S. Mozer, J. P. McFadden, D. E. Larson, and K.-H. Glassmeier, “Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection X lines at Earths magnetopause,” Phys. Rev. Lett., vol.107, issue.16, 2011.
[3] M. Oka, T. D. Phan, J. P. Eastwood, V. Angelopoulos, N. A. Murphy, M. Oieroset, Y. Miyashita, M. Fujimoto, J. McFadden, and D. Larson, “Magnetic reconnection X-line retreat associated with dipolarization of the Earth’s magnetosphere,” Geophys. Res. Lett., vol.38, L20105, 2011.
[4] P. Louarn, N. Andre, C. M. Jackman, S. Kasahara, E. A. Kronberg, and M.F. Vogt, “Magnetic reconnection and associated transient phenomena within the magnetosphere of Jupiter and Saturn,” Space Sci.Rev., vol.187, pp.181-227, 2015.
[5] D. Biskamp, Magnetic Reconnection in Plasma, Cambridge Univ. Press, 2000.
[6] S. A. Fuselier, K. J. Trattner, and S. M. Petrinec, “Antiparallel and component reconnection at the dayside magnetopause,” J. Geophys. Res., vol.116, A10227, 2011.
[7] D. A. Uzdensky, N. F. Loureiro, and A. A. Schekochihin, “Fast magnetic reconnection in the plasmoid-dominated regime,” Phys. Rev. Lett., vol.105, issue.23, 2010.
[8] J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett, “Geospace environmental modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res., vol.106, pp.3715-3719, 2001.
[9] N. Aunai, G. Belmont, and R. Smets, “Proton acceleration in antiparallel collisionless magnetic reconnection: Kinetic mechanisms behind the fluid dynamics,” J. Geophys. Res., vol.116, A09232, 2011.
[10] P. L. Pritchett, “Collisionless magnetic reconnection in a three-dimensional open system,” J. Geophys. Res., vol.106, no.A11, pp.25,961-25,977, 2001.
[11] A. Zeiler, D. Biskamp, J. F. Drake, B. N. Rogers, M. A. Shay, and M. Scholer, “Threedimensional particle simulations of collisionless magnetic reconnection,” J. Geophys. Res., vol.107, no,A9, 2002.
[12] M. Scholer, I. Sidorenko, C. H. Jaroschek, R. A. Treumann, and A. Zeiler, “Onset of collisionless magnetic reconnection in thin current sheets: three-dimensional particle simulations,” Phys. Plasmas, vol.10, no.9, 2003.
[13] N. F. Loureiro, R. Samtaney, A. A. Schekochihin, and D. A. Uzdensky, “Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas,” Phys. Plasmas, vol.19, 2012.
[14] S. Zenitani, M. Hesse, A. Klimas, and M. Kuznetsova, “New measure of the dissipation region in collisionless magnetic reconnection,” Phys. Rev. Lett., vol.106, 2011.
[15] A. Le, J. Egedal, O. Ohia, W. Daughton, H. Karimabadi, and V. S. Lukin, “Regimes of the electron diffusion region in magnetic reconnection,” Phys. Rev. Lett., vol.110, 2013.
[16] M.V. Goldman, G. Lapenta, D. L. Newman, S. Markidis, and H. Che, “Jet deflection by very weak guide fields during magnetic reconnection,” Phys. Rev. Lett., vol.107, 2011.
[17] M. I. Sitnov and M. Swisdak, “Onset of collisionless magnetic reconnection in twodimensional current sheets and formation of dipolarization fronts,” J. Geophys. Res., vol.116, A12216, 2011.
[18] T. Nagai, I. Shinohara, M. Fujimoto, A. Matsuoka, Y. Saito, and T. Mukai, “Construction of magnetic reconnection in the near-Earth magnetotail with Geotail,” J. Geophys. Res., vol.116, A04222, 2011.
[19] D. Biskamp, “Magnetic reconnection via current sheets,” Phys. Fluids, vol.29, 1986.
[20] C. J. Xiao, Z. Y. Pu, X. G. Wang, Z. W. Ma, S. Y. Fu, T. D. Phan, Q. G. Zong, Z. X. Liu, M. W. Dunlop, K.-H. Glassmeier, A. Balogh, H. Reme, I. Dandouras, and C. P. Escoubet, “A Cluster measurement of fast magnetic reconnection in the magnetotail,” Geophys. Res. Lett., vol.34, 2007.
[21] T. D. Phan, J. F. Drake, M. A. Shay, F. S. Mozer, and J. P. Eastwood, “Evidence for an elongated (>60 ion skin depths) electron diffusion region during fast magnetic reconnection,” Phys. Rev. Lett., vol.99, 2007.
[22] A. L. Borg, M. Oieroset, T. D. Phan, F. S. Mozer, A. Pedersen, C. Mouikis, J. P. McFadden, C. Twitty, A. Balogh, and H. Reme, “Cluster encounter of a magnetic reconnection diffusion region in the near-Earth magnetotail on September 19, 2003,” Geophys. Res. Lett., vol.32, L19105, 2005.
[23] X. R. Fu, Q. M. Lu, and S. Wang, “The process of electron acceleration during collisionless magnetic reconnection,” Phys. Plasmas, vol.13, 2006.
[24] M. A. Shay, J. F. Drake, and M. Swisdak, “Two-scale structure of the electron dissipation region during collisionless magnetic reconnection,” Phys. Rev. Lett., vol.99, 2007.
[25] M. M. Kuznetsova, M. Hesse, and D. Winske, “Kinetic quasi-viscous and bulk inertia effects in collisionless magnetotail reconnection,” J. Geophys. Res., vol.103, no.A1, pp.199-213, 1998.
[26] Q. Lu, C. Haung, J. Xie, R. Wang, M. Wu, A. Vaivads, and S. Wang, “Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations,” J. Geophys. Res., vol.115, 2010.
[27] S. M. Thompson, M. G. Kivelson, K. K. Khurana, R. L. McPherron, J. M. Weygand, A. Balogh, H. Reme, and L. M. Kistler, “Dynamic Harris current sheet thickness from Cluster current density and plasma measurements,” J. Geophys. Res., vol.110, 2005.
[28] X. Z. Zhou, V. Angelopoulos, V. A. Sergeev, and A. Runov, “Accelerated ions ahead of earthward propagating dipolarization fronts,” J. Geophys. Res., vol.115, 2010.
[29] P. H. Yoon, A. T. Y. Lui, and M. I. Sitnov, “Generalized lower-hybrid drift instabilities in current-sheet equilibrium,” Phys. Plasmas, vol.9, no.5, 2002.
[30] W. Daughton, J. Scudder, and H. Karimabadi, “Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions,” Phys. Plasmas, vol.13, 2006.
[31] S. Zenitani, and M. Hoshino, “Three-dimensional evolution of a relativistic current sheet: Triggering of magnetic reconnection by the guide field,” Phys. Rev. Lett., vol.95, 2005.
[32] C. Huang, Q. Lu, and S. Wang, “The mechanism of electron acceleration in antiparallel and guide field magnetic reconnection,” Phys. Plasmas, vol.17, 2010.
[33] A. Klimas, M. Hesse, and S. Zenitani, “Particle-in-cell simulation of collisionless reconnection with open outflow boundaries,” Phys. Plasma, vol.15, 2008.
[34] M. Zhou, H. Li, X. Deng, S. Huang, Y. Pang, Z. Yuan, X. Xu, and R. Tang, “Characteristic distribution and possible roles of waves around the lower hybrid frequency in the magnetotail reconnection region,” J. Geophys. Res.: Space Phys., vol.119, pp.8228-8242, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51385-
dc.description.abstract當具有南向星際磁場的太陽吹至地球時,在地球磁氣圈內可能導致磁重聯現象,其具體表徵為X-line的顯現。離子擴散層位於X-line的中心,在離子擴散層中,磁場的磁能會被轉換成質子的動能,將質子加速。本論文使用二維流體粒子混成模型模擬地球磁氣圈的磁重聯現象,在此模型中,電子被視為連續流體,而質子被視為離散粒子。文中分析磁場擾動、電流層厚度以及離子與電子質量比對磁場重聯率的影響。最後並使用磁氣圈內的Cluster太空船在2001年9月10日觀測到的數據驗證此模型。zh_TW
dc.description.abstractMagnetic reconnections were observed in the magnetotail when a southward interplanetary magnetic field (IMF) blows toward the Earth. Protons will be accelerated in an ion diffusion region (IDR) near the center of the X-line, and the magnetic energy in the field will be converted to increase the kinetic energy of the protons. Magnetic reconnection in the magnetotail is simulated with a two-dimensional hybrid model, in which electrons are treated as fluid and ions are treated as particles. The effects of magnetic field perturbation, current-sheet width and ion-to-electron mass ratio on the reconnection rate are analyzed. The parameters extracted from the data measured with the Cluster spacecraft in the magnetotail on September 10, 2001, are also used to check the validity of this model.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:32:27Z (GMT). No. of bitstreams: 1
ntu-105-R02942130-1.pdf: 2200813 bytes, checksum: d0e962b61fbf51b426e791d13ab484ae (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1 Introduction 1
2 Magnetohydrodynamic (MHD) Model 4
2.1 Normalization 8
2.2 Initial Conditions 9
2.3 Boundary Conditions 12
3 Particle Simulations 14
3.1 Initial Conditions 14
3.2 Boundary Conditions 15
4 Simulations and Discussions 17
5 Conclusion 25
Bibliography 26
dc.language.isoen
dc.title地球磁氣圈內磁重聯現象之流體粒子混成模型zh_TW
dc.titleHybrid Model of Magnetic Reconnection in Earth Magnetosphereen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee瞿大雄(Tah-Hsiung Chu),江衍偉(Yean-Woei Kiang)
dc.subject.keyword磁場重聯,流體粒子混成模型,離子擴散層,磁場重聯率,zh_TW
dc.subject.keywordmagnetic reconnection,hybrid model,ion diffusion region,reconnection rate,en
dc.relation.page29
dc.rights.note有償授權
dc.date.accepted2016-02-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved