Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏國彥
dc.contributor.authorWei-Ru Wangen
dc.contributor.author王緯茹zh_TW
dc.date.accessioned2021-06-15T13:32:02Z-
dc.date.available2019-04-07
dc.date.copyright2016-04-07
dc.date.issued2016
dc.date.submitted2016-02-02
dc.identifier.citationhttp://www.usgs.gov/ The United States Geological Survey (USGS)。
http://www.odb.ntu.edu.tw/國立臺灣大學海洋研究所與科技部海洋學門資料庫。
江愛蘋 (2004) 台灣西南海域沉積物中底棲性有孔蟲的分佈。國立中山大學海洋地質及化學研究所學位論文。
林玉詩、郭瑞龍、洪慶章、王兆璋、陳信宏、王珮玲、...楊燦堯 (2014) 探討富含甲烷沉積物對底水溶解無機碳的影響。第二期能源國家型科技計畫地熱及天然氣水合物主軸中心103年天然氣水合物分項成果發表會論文集,天然氣水合物分項,第58頁。
林殿順與劉家瑄 (2014) 臺灣西南外海天然氣水合物賦存模式暨資源潛能。地質,第33卷,第4期,21-25頁。
邵磊、李獻華、韋剛健、劉穎、房殿勇 (2001) 南海陸坡高速堆積體的物質來源。中國科學,地球科學 (中文版),第31卷,第10期,828-833頁。
洪崇勝 (2005) 台灣西南海域沉積物之磁學特性。台灣西南海域天然氣水合物賦存區地質調查研究,海域地質調查與地球化學探勘 (2/4),經濟部中央地質調查所。
翁子偉、羅聖宗、黃瑞賢、李建鋒 (2013) 南海天然氣水合物分布與資源量概況。鑛冶:中國鑛冶工程學會會刊,第222期,56-70頁。
郭瑞龍 (2015) 甲烷衍生的碳對表層沉積物與底層海水碳庫貢獻之初步研究:以臺灣西南海域四方圈合海脊冷泉區為例。國立中山大學海洋科學系碩士論文。
莊佩涓 (2006) 台灣西南海域天然氣水合物賦存區之氣體地球化學研究。臺灣大學地質科學研究所學位論文。
許鳳心 (2008) 台灣西南海域陸源有機碳沉降受鄰近島嶼型河川顆粒傳輸影響之研究。臺灣大學海洋研究所學位論文。
陳乃禎 (2009) 台灣西南海域天然氣水合物好景區之甲烷與溶解無機碳之碳同位素成份變化。臺灣大學地質科學研究所學位論文。
陳乃禎、黃愉珺、陳宣文、林曉武、王詠絢、楊燦堯 (2014) 台灣西南海域天然氣水合物賦存區海洋沉積物之甲烷通量估算。第二期能源國家型科技計畫地熱及天然氣水合物主軸中心103年天然氣水合物分項成果發表會論文集,天然氣水合物分項。
陳松春與王詠絢 (2007) 天然氣水合物探勘技術。科學發展,第412期,26-31頁。
陳芳、蘇新、陸红鋒、陳超云、周洋、程思海、劉廣虎 (2007) 南海北部淺表層沉積底棲有孔蟲碳同位素及其對富甲烷環境的指示。海洋地質與第四紀地質,第27卷,第4期,1-7頁。
黃任億 (2006) 台灣西南海域高屏陸坡盆地及澎湖海底峽谷-水道系統的沉積作用及演化。臺灣大學海洋研究所學位論文。
黃柏鈞 (2006) 台灣西南海域岩心沉積物之特性與來源。臺灣大學海洋研究所學位論文。
楊燦堯 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究-海底地質調查與地球化學探勘 (4/4):台灣西南海域海域與沉積物之氣體化學組成。經濟部中央地質調查所96年度委辦計畫,計畫編號96-5226903000-01-02。
樊文川 (1991) 台灣西南海域現代沉積物中底棲性有孔蟲之分部研究。臺灣大學地質科學研究所學位論文。
翦知湣與王律江 (1999) 南海晚第四紀表層古生產力與東亞季風變遷。第四紀研究,第19卷,第1期,32-40頁。
劉家瑄 (2011) 台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查 (4/4),反射震測與海床聲納迴聲剖面調查研究。經濟部中央地質調查所報告第100-24-A號,第124頁,第139頁。
鄭婉言、林曉武、陳麗雯、楊燦堯、戚務正 (2015) 台灣鄰近海底冷泉與泥火山:能源與生物寶藏。自然科學簡訊,第27卷,第1期,30-35頁。
賴美津、劉莉蓮、魏國彥、陳天任、林幸助、陳宣汶、...林哲宇 (2015) 天然氣水合物對深海生物多樣性與生態功能之影響評估。第二期能源國家型科技計畫地熱及天然氣水合物主軸中心104年天然氣水合物分項成果發表會論文集,天然氣水合物分項,69-70頁。
謝偉琦 (2006) 台灣西南海域沉積物之硫酸鹽還原作用與甲烷擴散之關係。臺灣大學海洋研究所學位論文。
鐘三雄與張碩芳 (2001) 甲烷氣水包合物的研究調查回顧與展望:經濟部中央地質調查所彙刊。
鐘三雄與劉家瑄 (2007) 新型態潔淨能源-天然氣水合物。科學發展月刊,第412期,6-13頁。
鐘三雄、陳松春、魏正岳、王詠絢、天然氣水合物委辦計畫團隊 (2015) 臺灣西南海域天然氣水合物資源地質精查及南部海域天然氣水合物賦存淺能調查(4/4)。第二期能源國家型科技計畫地熱及天然氣水合物主軸中心104年天然氣水合物分項成果發表會論文集,天然氣水合物分項,38-41頁。
蘇新、陳芳、于興河、黄永樣 (2005) 南海陸坡中新世以來沉積物特性與氣體水合物分布初探。現代地質,第19卷,第1期,1-13頁。
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., …… & Pfannkuch, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature 407, 623-626
Boetius, A., Suess, E. (2004). Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates, Chemical Geology, 205(3–4), 291-310.
Bauch, D., Erlenkeuser, H., Winckler, G., Pavlova, G., & Thiede, J. (2002). Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions. Marine Micropaleontology, 45(2), 83-99.
Bernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233-2249.
Borowski, W. S., Paull, C. K., & Ussler, W. (1996). Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24(7), 655-658.
Borowski, W. S., Paull, C. K., & Ussler Iii, W. (1999). Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geology, 159(1–4), 131-154.
Boswell, R. (2009). Is gas hydrate energy within reach? Science, 325(5943), 957-958.
Brooks, J., Kennicutt 2nd, M., Fay, R., McDonald, T., & Sassen, R. (1984). Thermogenic gas hydrates in the gulf of Mexico. Science (New York, NY), 225(4660), 409-411.
Callender, W. R., Staff, G. M., Powell, E. N., & MacDonald, I. R. (1990). Gulf of Mexico hydrocarbon seep communities V. Biofacies and shell orientation of autochthonous shell beds below storm wave base. Palaios, 5, 2-14.
Chatterjee, S., Dickens, G. R., Bhatnagar, G., Chapman, W. G., Dugan, B., Snyder, G. T., & Hirasaki, G. J. (2011). Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: A numerical modeling perspective. Journal of Geophysical Research: Solid Earth (1978–2012), 116(B9).
Collett, T. S., & Kuuskraa, V. A. (1998). Hydrates contain vast store of world gas resources. Oil and Gas Journal, 96(19), 90-94.
Corliss, B. H. (1985). Microhabitats of benthic foraminifera within deep-sea sediments. Nature, 314(4).
de Garidel-Thoron, T., Beaufort, L., Bassinot, F., & Henry, P. (2004). Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. Proceedings of the National Academy of Sciences of the United States of America, 101(25), 9187-9192.
Dickens, G. R., O'Neil, J. R., Rea, D. K., & Owen, R. M. (1995). Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10(6), 965-971.
Dickens, G. R., Castillo, M. M., & Walker, J. C. (1997). A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3), 259-262.
Dimitrov, L. I. (2002). Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1–4), 49-76.
Erbacher, J., & Nelskamp, S. (2006). Comparison of benthic foraminifera inside and outside a sulphur-oxidizing bacterial mat from the present oxygen-minimum zone off Pakistan (NE Arabian Sea). Deep Sea Research Part I: Oceanographic Research Papers, 53(5), 751-775.
Ginsburg, G.D., & Soloviev, V.A. (1997). Methane migration within the submarine gas-hydrate stability zone under deep-water conditions, Marine Geology, 137(1-2), 49-57.
Goericke, R., & Fry, B. (1994). Variations of marine plankton fi13C with latitude, temperature, and dissolved COz in the world ocean. Global Biogeochemical Cycles, 8(1), 85-90.
Grossman, E. L. (1984). Stable isotope fractionation in live benthic foraminifera from the southern California Borderland. Palaeogeography, Palaeoclimatology, Palaeoecology, 47(3–4), 301-327.
Hill, T. M., Kennett, J. P., & Spero, H. J. (2003). Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1–2), 123-138.
Hill, T. M., Kennett, J. P., & Spero, H. J. (2004). High-resolution records of methane hydrate dissociation: ODP Site 893, Santa Barbara Basin. Earth and Planetary Science Letters, 223(1–2), 127-140.
Hill, T. M., Kennett, J. P., & Valentine, D. L. (2004). Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22), 4619-4627.
Huang, T. (1961). Small Foraminifera from the beach sands at Tanmenkang, Pacho-Tao, Penghu. Proc. Geol. Soc. China, 4, 83-90.
Huang, T. (1971). Foraminiferal trends in the surface sediments of the Taiwan strait. ECAFE CCOP Techn. Bull., 4, 23-61.
Huang, T. (1972). Species diversity of benthic foraminifers in the Taiwan Strait, Taiwan, China. Proc. Geol. Soc. China, 15, 99-110.
Huang, T. (1983). Foraminiferal biofacies of the Taiwan Strait, ROC. Bollettino della Societa Paleontologica Italiana, 22(1-2), 151-177.
Jorissen, F. J., de Stigter, H. C., & Widmark, J. G. V. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1–4), 3-15.
Katz, M. E., Pak, D. K., Dickens, G. R., & Miller, K. G. (1999). The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science, 286(5444), 1531-1533.
Kennett, J. P., Cannariato, K. G., Hendy, I. L., & Behl, R. J. (2000). Carbon Isotopic Evidence for Methane Hydrate Instability During Quaternary Interstadials. Science, 288(5463), 128-133.
Kvenvolden, K. A. (1988). Origins of Methane in the Earth Methane hydrate — A major reservoir of carbon in the shallow geosphere? Chemical Geology, 71(1), 41-51.
Kvenvolden, K. (1998). A primer on the geological occurrence of gas hydrate. Geological Society, London, Special Publications, 137(1), 9-30.
Kvenvolden, K. A. (1999). Potential effects of gas hydrate on human welfare. Proceedings of the National Academy of Sciences, 96(7), 3420-3426.
Lin, S., Hsieh, W., Lim, Y. C., Yang, T. F., Liu, C., & Wang, Y. (2006). Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terrestrial Atmospheric and Oceanic Sciences, 17(4), 883.
Liu, C.-S., Huang, I. L., & Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology, 137(3–4), 305-319.
Liu, C.-S., Schnürle, P., Wang, Y.-S., Chung, S.-H., Chen, S.-C., & Hsiuan, T.-H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 615-644.
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., & Fairbanks, R. G. (1995). The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Global Biogeochemical Cycles, 9(4), 653-665.
Mackensen, A., Wollenburg, J., & Licari, L. (2006). Low δ13C in tests of live epibenthic and endobenthic foraminifera at a site of active methane seepage. Paleoceanography, 21(2).
Martin, J. B., Day, S. A., Rathburn, A. E., Perez, M. E., Mahn, C., & Gieskes, J. (2004). Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4).
Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2007). Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps, Cascadia accretionary margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2–4), 260-277.
Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1–4), 270-284.
McCorkle, D. C., Keigwin, L. D., Corliss, B. H., & Emerson, S. R. (1990). The influence of microhabitats on the carbon isotopic composition of deep‐sea benthic foraminifera. Paleoceanography, 5(2), 161-185.
Milkov, A. V., Sassen, R., Apanasovich, T. V., & Dadashev, F. G. (2003). Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophysical Research Letters, 30(2).
Milkov, A. V. (2004). Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66(3–4), 183-197.
Moore, T. S., Murray, R. W., Kurtz, A. C., & Schrag, D. P. (2004). Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229(1–2), 141-154.
Panieri, G. (2006). Foraminiferal response to an active methane seep environment: A case study from the Adriatic Sea. Marine Micropaleontology, 61(1–3), 116-130.
Panieri, G., Camerlenghi, A., Conti, S., Pini, G. A., & Cacho, I. (2009). Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 271-282.
Panieri, G., Aharon, P., Sen Gupta, B. K., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of Blake Ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99-107.
Paull, C., Lorenson, T., Borowski, W., Ussler III, W., Olsen, K., & Rodriguez, N. (2000). Isotopic composition of CH4, CO2 species, and sedimentary organic matter within samples from the Blake Ridge: Gas source implications. Paper presented at the Proc. ODP, Sci. Results.
Pohlman, J. W., Canuel, E. A., Chapman, N. R., Spence, G. D., Whiticar, M. J., & Coffin, R. B. (2005). The origin of thermogenic gas hydrates on the northern Cascadia Margin as inferred from isotopic (13 C/12 C and D/H) and molecular composition of hydrate and vent gas. Organic Geochemistry, 36(5), 703-716.
Rathburn, A. E., Corliss, B. H., Tappa, K. D., & Lohmann, K. C. (1996). Comparisons of the ecology and stable isotopic compositions of living (stained) benthic foraminifera from the Sulu and South China Seas. Deep Sea Research Part I: Oceanographic Research Papers, 43(10), 1617-1646.
Rathburn, A. E., Levin, L. A., Held, Z., & Lohmann, K. C. (2000). Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology, 38(3–4), 247-266.
Rathburn, A., Pérez, M. E., Martin, J., Day, S., Mahn, C., Gieskes, J., . . . Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems: G3, 4(12).
Roberts, H. H., & Aharon, P. (1994). Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Marine Letters, 14(2-3), 135-148.
Robinson, C. A., Bernhard, J. M., Levin, L. A., Mendoza, G. F., & Blanks, J. K. (2004). Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240 m). Marine ecology, 25(4), 313-336.
Rodriguez, N., Paull, C., & Borowski, W. (2000). Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: offshore southeastern north America. Paper presented at the Proceedings of the Ocean Drilling Program, Scientific Results.
Schmiedl, G., Pfeilsticker, M., Hemleben, C., & Mackensen, A. (2004). Environmental and biological effects on the stable isotope composition of recent deep-sea benthic foraminifera from the western Mediterranean Sea. Marine Micropaleontology, 51(1–2), 129-152.
Schwager, C. (1866). Fossile Foraminiferen von Kar Nikobar, Reise der Oesterreichischen Fregatte Novara um Erde in den Jahren 1857, 1858, 1859 unten den Befehlen des Commodore B. Von Wuellerstorf-Urbair. Geologischer Theil, Geologische Beobachtung no. 2, Palaeontologische Mittheilung, 2(1), 187-268.
Sen Gupta, B. K., & Aharon, P. (1994). Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico: Initial report on communities and stable isotopes. Geo-Marine Letters, 14(2-3), 88-96.
Sen Gupta, B. K., Platon, E., Bernhard, J. M., & Aharon, P. (1997). Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope. The Journal of Foraminiferal Research, 27(4), 292-300.
Shine, K. (1991). Climatic effects of carbon dioxide and methane releases. Teaching Earth Science, 16, 17-20.
Sloan, E. (1998). Physical/chemical properties of gas hydrates and application to world margin stability and climatic change. Geological Society, London, Special Publications, 137(1), 31-50.
Spero, H. J., Bijma, J., Lea, D. W., & Bemis, B. E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390(6659), 497-500.
Stott, L., Bunn, T., Prokopenko, M., Mahn, C., Gieskes, J., & Bernhard, J. (2002). Does the oxidation of methane leave an isotopic fingerprint in the geologic record? Geochemistry, Geophysics, Geosystems: G3, 3(2).
Suess, E., Torres, M. E., Bohrmann, G., Collier, R. W., Greinert, J., Linke, P., . . . Zuleger, E. (1999). Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth and Planetary Science Letters, 170(1–2), 1-15.
Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Micro, 6(8), 579-591.
Torres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., & de Angelis, M. A. (2003). Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography, 18(3).
Valentine, D. L. (2002). Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek, 81(1-4), 271-282.
Van der Zwaan, G., Jorissen, F., Verhallen, P., & Von Daniels, C. (1986). Uvigerina from the Eastern Atlantic, North Sea Basin, Paratethys and Mediterranean. Utrecht Micropaleontological Bulletins, 35, 7-20.
Van der Zwaan, G. J., Duijnstee, I. A. P., den Dulk, M., Ernst, S. R., Jannink, N. T., & Kouwenhoven, T. J. (1999). Benthic foraminifers: proxies or problems?: A review of paleocological concepts. Earth-Science Reviews, 46(1–4), 213-236.
Waseda, A. (1998). Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments. Geochemical journal, 32(3), 143-157.
Wefer, G., Heinze, P. M., & Berger, W. H. (1994). Clues to ancient methane release. Nature, 369(6478), 282-282.
Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1–3), 291-314.
Woodruff, F., Savin, S. M., & Douglas, R. G. (1980). Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera. Marine Micropaleontology, 5, 3-11.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51372-
dc.description.abstract當貯藏於海底地層中的天然氣水合物解離,可以釋放出大量甲烷進入海洋與大氣,進而影響全球氣候。生存於海底沉積物的底棲性有孔蟲,其殼體穩定碳同位素,可以記錄海底地層的甲烷逸氣。以往的研究顯示,在現代全球多個天然氣水合物甲烷逸漏環境中,底棲性有孔蟲穩定碳同位素受到周遭天然氣水合物甲烷逸漏產生偏輕變化。然而,不同的區域由於有不同的生地化沉積環境,底棲性有孔蟲穩定碳同位素的偏輕變化各異。
從地球物理震測發現臺灣西南海域海底地層中有大量的仿擬反射層 ( BSR ),代表著海底可能蘊藏有大量的天然氣水合物。海底表層沉積物的地球化學資料,也證實許多地區有高通量的甲烷逸漏,而被推測其下為天然氣水合物賦存區。若能究明本區域的底棲性有孔蟲穩定碳同位素偏輕變化與甲烷逸漏之關聯,將可以此關聯性解讀臺灣西南海域岩芯中底棲性有孔蟲殼體穩定碳同位素變化,重建該區表層沉積物中之過去甲烷逸漏歷史。本研究主要探討,臺灣西南海域天然氣水合物赋存區底棲性有孔蟲是否會受到天然氣水合物解離所致甲烷逸漏,而導致殼體穩定碳同位素數值呈現偏輕的變化。
本研究分析了採集於臺灣西南海域四方圈合海脊 (水深1330-1580公尺) 5 根岩芯 (OR1-1092-WFWC-1, OR1-1092-WFWC-4, OR1-1092-WFWC-6, OR3-1806-C5-2和OR3-1806-C10) 上部15公分沉積物中的底棲性有孔蟲Uvigerina proboscidea ( 150-250 μm ) 殼體穩定碳同位素,發現U. proboscidea殼體同位素數值在甲烷逸漏站位OR3-1806-C5-2介於-0.98‰到-6.21‰ ( VPDB ) 之間,在背景站位的碳同位素數值介於-0.40‰到-0.86‰之間,受到甲烷逸漏影響的站位比背景站位碳同位素數值偏輕約0.12‰到5.81‰。暗示產甲烷作用所產生的偏輕碳同位素紀錄於底棲性有孔蟲殼體 。
zh_TW
dc.description.abstractRelease of large amounts of methane from marine gas hydrate reservoirs has been considered as a possible trigger of climate change. The degassing of methane could be recorded by stable carbon isotopes (d13C) of benthic foraminifera in the sediments. Many previous studies have shown that foraminiferal d13C become more negative when influenced by methane seeps. However, values of d13C of benthic foraminifera might vary with different species and sedimentary settings in different regions.
Seismic profiles in offshore southwestern Taiwan have shown a wide distribution of the Bottom Simulating Reflector (BSR), indicative of gas hydrate reservoirs. Various methane seepages have been found, and they are suspected to be related to the gas hydrates buried underneath. A better understanding of the d13C signals of benthic foraminifera near the methane seepages can further clarify the origin of the methane and to evaluate it as a proxy of methane release for the geologic past.
We analyzed d13C of benthic foraminifera Uvigerina proboscidea (150-250 μm) in the topmost 15 cm sediments in five marine cores (OR1-1092-WFWC-1, OR1-1092-WFWC-4, OR1-1092-WFWC-6, OR3-1806-C5-2 and OR3-1806-C10) collected from the Four-Way Closure Ridge in offshore southwestern Taiwan (water depth from 1330 to 1580 m). Our results show that d13C values of U. proboscidea range from -0.98‰ to -6.21‰ (VPDB) for core OR3-1806-C5-2, which is considered as a seeps-influenced site. On the other hand, d13C values of U. proboscidea from the background sites range from -0.40‰ to -0.86‰. The difference between the methane seep-affected and the background sites is in the range of 0.12‰ to 5.81‰, comparable to those documented in previous studies in other areas. The significant negative excursion in carbon isotopes in the seep site foraminifera. Suggests an incorporation of light biogenic carbon generated by methanogenesis in the system.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:32:02Z (GMT). No. of bitstreams: 1
ntu-105-R02224103-1.pdf: 4490462 bytes, checksum: ffdf98caf296993aa40c31dde9c1aa35 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章、緒論 1
1.1 前言 1
1.2 天然氣水合物生地化系統 3
1.2.1 天然氣水合物概述 3
1.2.2 微生物產甲烷作用 8
1.2.3 微生物甲烷氧化作用 11
1.2.4 甲烷逸漏區的底棲性有孔蟲 15
1.3 研究區域概況 19
1.3.1 臺灣西南海域天然氣水合物研究概況 19
1.3.2 臺灣西南海域底棲性有孔蟲組成 23
1.3.3 四方圈合海脊 24
1.4 研究目的 25
第二章、研究材料與方法 26
2.1 岩芯站位 26
2.2 底棲性有孔蟲的穩定碳同位素 31
2.2.1 有孔蟲殼體的穩定碳同位素意義 31
2.2.2 底棲性有孔蟲挑選原則 32
2.3 有孔蟲殼體穩定碳同位素分析 33
2.4 沉積物總有機碳含量分析 35
2.5 沉積物總有機碳之穩定碳同位素分析 37
第三章、研究結果 39
3.1 穩定碳氧同位素分析結果 39
3.2 沉積物總有機碳與總有機碳同位素分析結果 42
第四章、討論 45
4.1 穩定同位素變化特徵 45
4.2 探討穩定碳同位素變化特徵成因 47
4.2.1 自生性碳酸鹽成岩作用 (authigenic carbonate) 48
4.2.2 沉積物有機碳增加 49
4.2.3 甲烷溢漏 53
4.3 甲烷逸漏區底棲性有孔蟲殼體13C研究存在問題 60
第五章、結論 62
引用文獻 63
dc.language.isozh-TW
dc.subject天然氣水合物zh_TW
dc.subject碳同位素zh_TW
dc.subject底棲性有孔蟲zh_TW
dc.subject甲烷zh_TW
dc.subject天然氣水合物zh_TW
dc.subject碳同位素zh_TW
dc.subject底棲性有孔蟲zh_TW
dc.subject甲烷zh_TW
dc.subjectgas hydrateen
dc.subjectmethaneen
dc.subjectbenthic foraminiferaen
dc.subjectcarbon isotopesen
dc.subjectgas hydrateen
dc.subjectmethaneen
dc.subjectbenthic foraminiferaen
dc.subjectcarbon isotopesen
dc.title臺灣西南海域四方圈合海脊底棲性有孔蟲殼體碳同位素與甲烷逸漏之關聯zh_TW
dc.titleCarbon isotopes of benthic foraminifera associated with methane seeps in the Four-Way Closure Ridge, offshore southwestern Taiwanen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王珮玲,米泓生,林玉詩
dc.subject.keyword天然氣水合物,甲烷,底棲性有孔蟲,碳同位素,zh_TW
dc.subject.keywordgas hydrate,methane,benthic foraminifera,carbon isotopes,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2016-02-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved