Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51366
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorYi-Ting Linen
dc.contributor.author林奕廷zh_TW
dc.date.accessioned2021-06-15T13:31:50Z-
dc.date.available2021-03-08
dc.date.copyright2016-03-08
dc.date.issued2014
dc.date.submitted2016-02-02
dc.identifier.citation[1] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, 'Surface Studies by Scanning Tunneling Microscopy,' Physical Review Letters, vol. 49, pp.57-61, 1982.
[2] G. Binnig, C.F. Quate, and C. Gerber, 'Atomic Force Microscope,' Physical Review Letters, vol. 56, pp. 930-933, 1986.
[3] B. Bharat, F.Harald, and T.Masahiko, Applied Scanning Probe Methods VIII, Springer, pp. 31-75 , 2008.
[4] Ju, B. F., Chen, Y. L., Zhang, W. and Fang, F. Z. “Rapid measurement of a high step microstructure with 90° steep sidewall.” Review of Scientific Instruments, 83(1), 2012.
[5] Cho, S. J., Ahn, B. W., Kim, J., Lee, J. M., Hua, Y., Yoo, Y. K. and Park, S. I, “Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy.” Review of Scientific Instruments, 2011.
[6] Hua, Y., Buenviaje-Coggins, C., Lee, Y. H., Lee, J. M., Ryang, K. D. and Park, S. I, 'New three-dimensional AFM for CD measurement and sidewall characterization.' SPIE Advanced Lithography. International Society for Optics and Photonics, 2011.
[7] Satoh, N., Tsunemi, E., Miyato, Y., Kobayashi, K., Watanabe, S., Fujii, T. and Yamada, H. 'Multi-probe atomic force microscopy using piezoelectric cantilevers. ' Japanese Journal of Applied Physics, 46(8S), 2007.
[8] Mancevski, V. and McClure, P. F. 'Development of a dual-probe Caliper CD-AFM for near model-independent nanometrology. ' SPIE's 27th Annual International Symposium on Microlithography (pp. 83-91). International Society for Optics and Photonics, 2002.
[9] Tsunemi, E., Kobayashi, K., Matsushige, K. and Yamada, H. 'Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams.' Review of Scientific Instruments, 82(3), 2011.
[10] Xie, H., Haliyo, D. S., and Régnier, S. “A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly.” Nanotechnology, 20(21), 2009.
[11] B. Song; N. Xi; R. Yang; K. Wai; C. Lai; C. Qu, 'On-line sensing and visual feedback for atomic force microscopy (AFM) based nano-manipulations,' Nanotechnology Materials and Devices Conference (NMDC), 2010 IEEE , 2010.
[12] P.I. Chang, H. Peng, J. Maeng, and S.B. Andersson, 'Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy,' Review of Scientific Instruments , 2011.
[13] G. Li; Y. Wang; L. Liu, 'Drift Compensation in AFM-Based Nanomanipulation by Strategic Local Scan,' Automation Science and Engineering, IEEE Transactions on , 2012.
[14] Chen, C. L., Wu, J. W., Lin, Y. T., Lo, Y. T. and Fu, L. C. “Sinusoidal trajectory for atomic force microscopy precision local scanning with auxiliary optical microscopy.” In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on (pp. 348-353). IEEE, 2013.
[15] J. and P. Curie, 'Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées,' Comptes rendus, 1880.
[16] P. J. Chen and S. T. Montgomery, 'A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,' Ferroelectrics, 1980.
[17] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, 'Tapping mode atomic force microscopy in liquids,' Applied Physics Letters, 1994.
[18] T. R. Rodriguez and R. Garcia, 'Theory of Q control in atomic force microscopy,' Applied Physics Letters, 2003.
[19] Edwards, H., Taylor, L., Duncan, W. and Melmed, A. J. “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor.” Journal of applied physics, 1997.
[20] Akiyama T. U.S. Patent No. 7,051,582. Washington, DC: U.S. Patent and Trademark Office, 2006.
[21] Bayat, D., Akiyama, T., de Rooij, N. F. and Staufer, U. “Dynamic behavior of the tuning fork AFM probe.” Microelectronic Engineering, 2008.
[22] Akiyama, T., Staufer, U., De Rooij, N. F., Frederix, P. L. T. M. and Engel, A. “Symmetrically arranged quartz tuning fork with soft cantilever for intermittent contact mode atomic force microscopy.” Review of scientific instruments, 2003.
[23] Hu, W. L., Hung, S. K. and Fu, L. C. “Design and control of tapping mode atomic force microscope in liquid utilizing optical pickup system.” In Control, Automation and Systems, 2008. ICCAS 2008. International Conference on ,IEEE., 2008
[24] Greenberg M. J. Euclidean and Non-Euclidean Geometries: Development and History, W. H. Freeman and Company, New York.
[25] Roussopoulos, N., Kelley, S. and Vincent, F. “Nearest neighbor queries.” In ACM sigmod record. ACM, 1995.
[26] Wu, J. W., Huang, K. C., Chiang, M. L., Chen, M. Y. and Fu, L. C. “Modeling and controller design of a precision hybrid scanner for application in large measurement-range atomic force microscopy.” Industrial Electronics, IEEE Transactions on, 2014.
[27] Zhao, Y., Sun, X., Zhang, G., Trewyn, B. G., Slowing, I. I. and Lin, V. S. Y. “Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects.” ACS nano, 2011.
[28] Wu, J. W., Chen, J. J., Huang, K. C., Chen, C. L., Lin, Y. T., Chen, M. Y. and Fu, L. C. “Design and control of phase-detection mode atomic force microscopy for cells precision contour reconstruction under different environments.” In American Control Conference (ACC), 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51366-
dc.description.abstract隨著微奈米技術的大幅演進,對於微奈米結構之精確量測已經成為目前一個相當重要之議題。而原子力顯微鏡是一種具有高解析能力的精確量測工具,因此近年來已經被廣泛地運用於微奈米結構之輪廓量測。然而,由於傳統原子力顯微鏡之單一探針傾斜角設計,當量測樣本在邊緣具有大幅度傾斜之特性時,無法避免量測樣本與掃描探針間相對角度之量測誤差,間接造成掃描結果的扭曲與失真。
為了改善上述之量測失真問題,本研究提出一新型雙掃描探針原子力顯微鏡掃描系統,此系統具備高度適應性,它可以隨著各種樣本輪廓特徵分別對兩根掃描探針調整一個適合的探針傾斜角度。此外,本研究也提出一種探針傾角計算之方法,在不同的樣本輪廓特徵下可以有效地計算出所需之探針掃描傾角,在兩根掃描探針個別以所設計之傾角掃描完成後,藉由所開發的掃描結果疊合之演算法,將兩根掃描探針得到之掃描資料有效地合併,以準確地還原樣本原始的輪廓特徵。 最後,本研究將提出之精確掃描方法與局部掃描策略結合,使其所開發之原子力顯微鏡系統具備高速與高精確度的掃描能力。從一系列的實驗結果可以證實此研究所提出的方法效果。
zh_TW
dc.description.abstractWith the constant improvement of micro/nano-fabrication techniques, the measurement of feature size of micro/nano-fabricated structures becomes an important issue. Atomic force microscopy (AFM) is a high accuracy measurement instrument that has been widely used in measuring of micro/nano-fabricated structures recently. However, due to the monotonic tilting angle of a single probe in a traditional AFM system, the scanning results of the measured sample with high steep wall features usually exhibit distortion phenomenon at the corner part.
To solve this problem, a novel dual probe AFM system is proposed in this thesis. A highly flexible system structure is adopted in this work to create different tilting angle of each probe. With the method developed for the right tilting angle, we can obtain the effective tilting angles under different scanning scenarios. In addition, a useful merging method is also designed in this thesis, which can stitch the scanning results from two different scanning units probes together to produce high-precision overall scanning results. Finally, by combining the proposed scan method with some local scan strategy developed in our lab, we can achieve high-speed precision scan. Experimental results are shown to validate the outstanding capability of the proposed methods by applying in our self-development AFM system.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:31:50Z (GMT). No. of bitstreams: 1
ntu-103-R01921014-1.pdf: 10963256 bytes, checksum: dd867f8ccf3a53b06546d91c76c8ed67 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract …iii
Table of content iv
Table of Acronyms v
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 2
1.2.1 3D-AFM 3
1.2.2 Dual probes AFM 5
1.2.3 Local scan AFM 7
1.3 Contribution 10
1.4 Thesis Organization 11
Chapter 2 Preliminary 13
2.1 Fundamentals of Piezoelectric Actuation 13
2.1.1 Piezoelectric effect 14
2.1.2 Hysteresis phenomenon 15
2.2 Operation Principle of AFM System 16
2.2.1 Tip-sample interaction modes 17
2.2.2 AFM scanning schemes 20
2.3 Akiyama Probe 22
Chapter 3 System Design and Dynamics 26
3.1 AFM Scanning System 27
3.2 AFM measuring System 32
3.2.1 Akiyama probe excitation 32
3.2.2 Akiyama probe detection 34
3.2.3 Probe tilting angle connector 36
3.3 Alignment Unit 37
3.4 Hardware Equipment 38
Chapter 4 Dual Probe Scan 41
4.1 Conventional Monotonic Tilting Angle Scan 42
4.2 Probe Alignment Method 43
4.3 Tilting Angle Analysis 46
4.4 Scan Result Merging Method 49
4.5 Dual Probe Scan Method with Local Scan 52
4.5.1 Local Scan Strategy 52
4.5.2 Scan Trajectory 54
Chapter 5 Experiments 58
5.1 Experimental Setup 58
5.2 System Controller 59
5.3 Measurement Sensor Comparison 60
5.4 AFM Scanning Application 62
5.4.1 Standard grating with traditional scan method 62
5.4.2 Standard grating with proposed scan method 65
5.4.3 Human blood cell with proposed scan method 67
Chapter 6 Conclusions 72
Reference 73
dc.language.isoen
dc.subject雙探針掃描zh_TW
dc.subject原子力顯微鏡zh_TW
dc.subject雙探針掃描zh_TW
dc.subject局部掃描策略zh_TW
dc.subject高精確掃描zh_TW
dc.subject探針傾斜角zh_TW
dc.subject局部掃描策略zh_TW
dc.subject高精確掃描zh_TW
dc.subject探針傾斜角zh_TW
dc.subject原子力顯微鏡zh_TW
dc.subjectlocal scan strategyen
dc.subjectatomic force microscopy (AFM)en
dc.subjectprobe tilting angleen
dc.subjecthigh-precision scanningen
dc.subjectatomic force microscopy (AFM)en
dc.subjectdual probe scanen
dc.subjecthigh-precision scanningen
dc.subjectprobe tilting angleen
dc.subjectdual probe scanen
dc.subjectlocal scan strategyen
dc.title最適傾角之高精確掃描雙探針原子力顯微鏡系統zh_TW
dc.titleA Dual Probes AFM System with Effective Tilting Angles to Achieve High-Precision Scanningen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee洪紹剛(Hung Shao-Kang),陳美勇(Mei-Yung Chen),顏家鈺(Jia-Yush Yen),范光照(Kuang-Chao Fan)
dc.subject.keyword原子力顯微鏡,雙探針掃描,探針傾斜角,高精確掃描,局部掃描策略,zh_TW
dc.subject.keywordatomic force microscopy (AFM),dual probe scan,probe tilting angle,high-precision scanning,local scan strategy,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2016-02-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
10.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved