請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51349完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉汀峰 | |
| dc.contributor.author | Li-Yuan Liu | en |
| dc.contributor.author | 劉立元 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:31:18Z | - |
| dc.date.available | 2019-02-24 | |
| dc.date.copyright | 2016-02-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-03 | |
| dc.identifier.citation | 王仁、陳財輝、劉瓊霦(2010)臺灣長期忽視的生物資源-竹。臺灣林業期刊 36:12-18。
邱立文、黃群修、吳俊奇、謝小恬(2015)第4次全國森林資源調查成果概要。臺灣林業期刊41:3-13。 林維治(1958)臺灣竹類生長之研究。臺灣省林業試驗所試驗報告第54號。 呂錦明(2010)臺灣竹圖鑑。晨星出版社。271頁。 鄭武燦(2000)臺灣植物圖鑑(下冊)。國立編譯館主編,茂昌圖書公司發行。1987頁。 Bateman, R. M., P. R. Crane, W. A. DiMichele, P. R. Kenrick, N. P. Rowe, T. Speck, and W. E. Stein (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics, 29:263-292. Bitter, T. and H. M. Muir (1962) A modified uronic acid carbazole reaction. Analytical Biochemistry, 4:330-334. Blakeney, A. B., P. J. Harris, R. J. Henry, and B. A. Stone (1983) A simple and rapis preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 113:291-299. Boerjan, W., J. Ralph, and M. Baucher (2003) Lignin biosynthesis. Annual Review of Plant Biology, 54:519-546. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72:248-254. Bugos, R. C., V. L. Chiang, and W. H. Campbell (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Molecular Biology, 17:1203-1215. Chang, H. M. and K. V. Sarkanen (1973) Species variation in lignin: effect of species on rate of kraft delignification. Tappi, 56:132-136. Chang, W. J., M. J. Chang, S. T. Chang, and T. F. Yeh (2013) Chemical composition and immunohistological variations of a growing bamboo shoot. Journal of Wood Chemistry and Technology, 33:144-155. Chen, F. and R. A. Dixon (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 25:759-761. Chen, F., P. Kota, J. W. Blount, and R. A. Dixon (2001) Chemical syntheses of caffeoyl and 5-OH coniferyl aldehydes and alcohols and determination of lignin O-methyltransferase activities in dicot and monocot species. Phytochemistry, 58:1035-1042. Chen, L., C. Auh, F. Chen, X. Cheng, H. Aljoe, R. A. Dixon, and Z. Wang (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. Journal of Agricultural and Food Chemistry, 50:5558-5565. Cosgrove, D. J. (2005) Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6:850-861. Daubresse, N., C. Francesch, F. Mhamdi, and C. Rolando (1994) A mild synthesis of coumaryl, coniferyl, sinapyl aldehydes and alcohols. Synthesis, 4:369-371. Dence, C. W. and S. Y. Lin (1992) Introduction. pp.3-19 In S. Y. Lin and C. W. Dence, eds. Methods in Lignin Chemistry. Springer-Verlag, Berlin. 578pp. Dien, B. S., D. J. Miller, R. E. Hector, R. A. Dixon, F. Chen, M. McCaslin, P. Reisen, G. Sarath, and M. A. Cotta (2011) Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresource Technology, 102:6479-6486. Edwards, R. and R. A. Dixon (1991) Purification and characterization of S-adenosyl-L-methionine: caffeic acid 3-O-methyltranasferase from suspension cultures of alfalfa (Medicago sativa L.). Archives of Biochemistry and Biophysics, 287:372-379. Fu, C., J. R. Mielenz, X. Xiao, Y. Ge, C. Y. Hamilton, M. Rodriguez, F. Chen, M. Foston, A. Ragauskas, J. Bouton, R. A. Dixon, and Z. Y. Wang (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences U.S.A., 108:3803-3808. Fujii, Y., J. Azuma, R. H. Marchessault, F.G. Morin, S. Aibara, and K. Okamura (1993) Chemical composition change of bamboo accompanying its growth. Holzforschung, 47:109-115. Gensel, P. G. (2008) The earliest land plants. Annual Review of Ecology, Evolution, and Systematics, 39:459-477. Grabber, J. H., P. F. Schatz, H. Kim, F. Lu, J. Ralph (2010) Identifying new lignin bioengineering target: 1. monolignol-substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biology, 10:114-127. Grosser, D. and W. Liese (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Science and Technology, 5:290-312. Hayatsu, R., R. E. Winans, R. L. McBeth, R. G. Scott, L. P. Moore, and M. H. Studier (1979) Lignin-like polymers in coals. Nature, 278:41-43. Hernanz, D., V. Nunez, A. I. Sancho, C. B. Williamson, B. Bartolome, and C. Gomez-Cordoves (2001) Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. Journal of Agricultural and Food Chemistry, 49:4884-4888. Higuchi T., M. Shimada, and H. Ohachi (1967) Role of O-methyltransferase in the lignification of bamboo. Agricultural and Biological Chemistry, 31:1459-1465. Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315:804-807. Katahira, R. and F. Nakatsubo (2001) Determination of nitrobenzene oxidation products by GC and 1H-NMR spectroscopy using 5-iodovanillin as a new internal standard. Journal of Wood Science, 47:378-382. Kenrick, P. and P. R. Crane (1997) The origin and early evolution of plants on land. Nature, 389:33-39. Kim, B. G., Y. J. Lee, Y. Park, Y. Lim, and J. Ahn (2006) Caffeic acid O-methyltransferase from Populus deltoids: functional expression and characterization. Journal of Plant Biology, 49:55-60. Koshiba, T., N. Hirose, M. Mukai, M. Yamamura, T. Hattori, S. Suzuki, M. Sakamoto, and T. Umezawa (2013) Characterization of 5-Hydroxyconiferaldehyde O-Methyltransferase in Oryza sativa. Plant Biotechnology, 30:157-167. Kuroda, H., M. Shimada, and T. Higuchi (1981) Roles of bamboo O-methyltransferase in the lignin biosynthesis. Wood Research, 67:17-28. Lam, T. B. T., K. Kadoya, and K. Iiyama (2001) Bonding of hydroxycinnamic acids to lignon : ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the -position, in grass cell walls. Phytochemistry, 57:987-992. Lamb, J. F. S., H. J. G. Jung, C. C. Sheaffer, and D. A. Samac (2007) Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Science, 47:1407-1415. Lapierre, C., B. Pollet, M. Petit-Conil, G. Toval, J. Romero, G. Pilate, J. Leple´, W. Boerjan, V. Ferret, V. D. Nadai, and L. Jouanin (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiology, 199:153-163. Li, L., J. L. Popko, T. Umezawa, and V. L. Chiang (2000) 5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. Journal of Biological Chemistry, 275: 6537-6545. Li, L., J. L. Popko, X. H. Zhang, K. Osakabe, C. J. Tsai, C. P. Joshi, and V. L. Chiang (1997) A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proceedings of the National Academy of Sciences U.S.A., 94:5461-5466. Li, X. B., T. F. Shupe, G. F. Peter, C. Y. Hse, and T. L. Eberhardt (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. Journal of Tropical Forest Science, 19:6-12. Liese, W. (1987) Resaerch on bamboo. Wood Science and Technology 21:189-209. Lin, J., X. He, Y. Hu, T. Kuang, and R. Ceulemans (2002) Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostachys pubescens) stems. Physiologia Plantarum, 114:296-302. Liu, J, R. Shi, Q. Li, R. R. Sederoff, and V. L. Chiang (2012) A standard reaction condition and a single HPLC separation system are sufficient for estimation of monolignol biosynthetic pathway enzyme activities. Planta, 236:879-885. Louie, G.V., M. E. Bowman, Y. Tu, A. Mouradov, G. Spangenberg, and J. P. Noel ( 2010 ) Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell, 22:4114-4127. Lowry, B., D. Lee, and C. Hébant (1980) The origin of land plants: a new look at an old problem. Taxon, 29:183-197. Ma, Q. H., and Y. Xu (2008) Characterization of a caffeic acid 3-O-methyltransferase from wheat and its function in lignin biosynthesis. Biochimie, 90:515-524. McClure, F. A. (1996) The Bamboos, A Fresh Perspective. Harvard Universist Press, Cambridge, MA, 347 pp. Nakano, J. and G. Meshitsuka (1992) The detection of lignin. pp.23-32 In S. Y. Lin and C. W. Dence, eds. Methods in Lignin Chemistry. Springer-Verlag, Berlin. 578pp. Nakatsubo, T., L. Ia, T. Hattori, S. Lu, N. Sakakibara, V. L. Chiang, and T. Umezawa (2007) Roles of 5-hydroxyconiferylaldehyde and caffeoyl CoA O-methyltransferases in monolignol biosynthesis in Carthamus tinctorius.Cellulose Chemistry and Technology, 41:511-520. Noel, J. P., R. A. Dixon, E. Pickersky, C. Zubieta, and J. L. Ferrer (2003) Structural, functional and evolutionary basis for methylation of plant small molecules. Recent Advances in Phytochemistry, 37:37-58. Petrik, D. L., S. D. Karlen, C. L. Cass, D. Padmakshan, F. Lu, S. Liu, P. L. Bris, S. Antelme, N. Santoro, C. G. Wilkerson, R. Sibout, and C. Lapierre (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant Journal, 77:713-726. Ralph, J. (2010) Hydroxycinnamates in lignification. Phytochemistry Reviews, 9:65-83. Raven, J. A. (1984) Physiological correlates of the morphology of early vascular plants. Botanical Journal of the Linnean Society, 88:105-126. Schmittgen, T. D. and K. J. Livak (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3:1101-1108. Scurlock, J. M. O., D. C. Dayton, and B. Hames (2000) Bamboo: an overlooked biomass resource. Biomass and Bioenergy, 19:229-244. Shi, R., Y. Sun, Q. Li, S. Heber, R. Sederoff, and V. L. Chiang (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiology, 51:144-163. Simmons, B. A., D. Loque, and J. Ralph (2010) Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 13:313-320. Singh, M. M., S. K. Parkayastha, P. P. Bhola, K. Lal, and S. Singh (1976) Fibre morphology and pulp sheet properties of Indian bamboos. Indian Forester, 102:579-595. Singh, R., P. Gupta, V. P. Pandey, and U. N. Dwivedi (2011) Temporal expression of caffeic acid 3-O-methyltransferase (COMT) in mango (Mangifera indica var. Dashehari) fruit ripening. LWT-Food Science and Technology, 44:1782-1785. Wang, J. P., L. Chuang, P. L. Loziuk, H. Chen, Y. C. Lin, R. Shi, G. Z. Qu, D. C. Muddiman, R. R. Sederoff, and V. L. Chiang (2015) Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyltransferase activity in poplar monolignol biosynthesis. Proceedings of the National Academy of Sciences U.S.A., 112:8481-8486. Wang, J. P., P. P. Naik, H. C. Chen, R. Shi, C. Y. Lin, J. Liu, C. M. Shuford, Q. Li, Y. H. Sun, S. Tunlaya-Anulit, C. M. Williams, D. C. Muddiman, J. J. Ducoste, R. R. Sederoff, and V. L. Chiang (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell, 26:894-914. Weng, J. K., X. Li, N. D. Bonawitz, and C. Chapple (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Current Opinion in Biotechnology, 19:166-172. Weng, J. K. and C. Chapple (2010) The origin and evolution of lignin biosynthesis. New Phytologist, 187:273-285. Weng, J. K., T. Akiyama, J. Ralph, and C. Chapple (2011) Independent recruitment of an O-methyltransferase for syringyl lignin biosynthesis in Selaginella moellendorffii. Plant Cell, 23:2708-2724. Wu, X., J. Wu, Y. Luo, J. Bragg, O. Anderson, J. Vogel, and Y. Q. Gu (2013) Phylogenetic, molecular, and biochemical characterization of caffeic acid O-methyltransferase gene family in Brachypodium distachyon. International Journal of Plant Genomics, 2013:1-12. Yeh, T. F., B. Goldfarb, H. M. Chang, I. Peszlen, J. L. Braun, and J. F. Kadla (2005) Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine. Holzforschung, 59:669-674. Zhao, G., R. Lai, B. He, T. Greschik, and X. Li (2010) Replacement of softwood kraft pulp with ECF-bleached bamboo kraft pulp in fine paper. BioResources, 5:1733-1744. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51349 | - |
| dc.description.abstract | 麻竹(Dendrocalamus latiflorus, Dla)是臺灣分布範圍最廣的竹類,生長速度快,單一生長季高度可達25 m。在麻竹稈生長過程中,細胞壁會快速累積木質素(Lignin)。麻竹稈細胞壁中具有可觀的p-Coumaric acid及Ferulic acid;而麻竹稈木質素為H-G-S type lignin,其中S lignin隨著生長而累積的量最為顯著。被子植物(Angiosperm)中S lignin主要由Caffeic acid O-methyltransferases (COMTs)進行5-O-Methylation催化生成。從麻竹稈選殖出6條DlaCOMTs,DlaCOMTs全長為1083 bp,可轉譯(Translation)出361個胺基酸。而完整DlaCOMTs皆具有COMT蛋白的特殊結構。由演化樹狀圖可知DlaCOMTs親源關係與孟宗竹(Phyllostachys pubescens)最為相近。利用qRT-PCR測得DlaCOMTs的組織特異性,在木質化程度高之麻竹稈下部的表現量最高。體外表現並純化出的DlaCOMTs重組蛋白,利用酵素動力學測得對5-HCAld (5-Hydroxyconiferaldehyde)在in vitro狀態下專一性最高,同時對5-HFA(5-Hydroxyferulic acid)為競爭型抑制。表示DlaCOMTs在整個木質素生合成途徑中,偏好走途徑下方5-HCAld催化生成SAld(Sinapaldehyde),顯示麻竹S lignin甲基化生合成途徑可能與雙子葉被子植物的S lignin生合成途徑相似。 | zh_TW |
| dc.description.abstract | Ma bamboo (Dendrocalamus latiflorus, Dla) is the most widely distributed bamboo species in Taiwan. It grows extremely fast and can reach about 25 meter in height within one growing season. During its growth, ma bamboo’s cell walls accumulate lignin rapidly. There is a considerable amount of p-coumaric acid and ferulic acid in ma bamboo’s cell walls. And ma bamboo’s lignin is a H-G-S type lignin, and it accumulates S lignin rapidly during bamboo’s growth. The 5-O-methylation of angiosperm S lignin had long been proposed to be catalyzed by the caffeic acid O-methyltransferases (COMTs). 6 DlaCOMTs were further cloned from ma bamboo culm. The full length of DlaCOMTs is composed of a 1083 bp open reading frame encoding 361 amino acids with the highest similarity to that of Phyllostachys pubescens. All DlaCOMTs have the specific protein structures of COMT family. Gene expression profiles revealed by qRT-PCR indicated that DlaCOMTs had tissue specificity and expressed in the lignification stage during culm development. Enzyme activity assays also revealed that DlaCOMTs have in vitro substrate preference for 5-HCAld (5-Hydroxyconiferaldehyde) of the monolignol biosynthetic pathway. The O-methylation activities of DlaCOMTs on 5-HFA (5-Hydroxyferulic acid) were strongly inhibited by 5-HCAld (competitive inhibition). The results implicated that DlaCOMTs would catalyze 5-HCAld to SAld (Sinapaldehyde), and the biosynthesis pathway of S lignin methylation in ma bamboo might be similar to that in dicotyledons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:31:18Z (GMT). No. of bitstreams: 1 ntu-105-R01625002-1.pdf: 4369085 bytes, checksum: e8899e146b3185cbdf13c15b7568f93c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝誌………………………………………………………………………………...…..I
摘要………………………………………………………………………………...…II Abstract………………………………………………………………………………III 目錄……………………………………………………………….………………….IV 圖目錄………………………………………………………………………….…...VII 表目錄………………………………………………………………………..………XI I. 前言………………………………………………………………………...….1 II. 文獻回顧………………………………………………………………………3 1. 麻竹的分布與應用……………………………………………………..…3 2. 木質素在植物生長所扮演之角色……………………………………..…4 3. COMT酵素於木質素生合成之角色與功能……………………………..7 4. COMT蛋白質結構…………………………………………………..…..12 5. 調控COMT對於改良木質素生合成的影響…………………….………16 6. COMT改良木質素之應用………………………………………………21 III. 研究目的………………………..……………………………………………24 IV. 材料與方法……………………………………………………………..……25 1. 試驗材料…………………………………………………………………25 2. 麻竹稈不同生長階段之木質素染色觀察………………………………27 2.1 試材製備…………………………………………………………..…27 2.2 切片製作…………………………………………………………..…27 2.3 木質素染色…………………………………………………..………27 3. 麻竹稈不同生長階段之化學組成分分析………………………………28 3.1 木質素含量測定…………………………………………………..…28 3.2 醣類含量測定……………………………………………………..…29 3.3 醣醛酸含量測定…………………………………………………..…29 3.4 木質素單體分析…………………………………………………..…30 4. Total RNA的萃取及cDNA的製備………………………………………31 5. 麻竹COMT基因選殖………………………………………….…………31 5.1 選殖載體(Cloning vector)…………………………………………..31 5.2 轉殖菌株…………………………………………………..…………31 5.3 設計引子(Primer)…………………………………………...………32 5.4 聚合酶連鎖反應……………………………………………..………32 5.5 純化目標基因片段並定序…………………………..………………33 6. 麻竹COMT序列之親源關係(Phylogenetic)分析……………………33 7. 麻竹COMT之組織特異性………………………………………….……33 8. 麻竹總蛋白萃取及COMT重組蛋白質表現及純化……………………35 8.1 麻竹總蛋白萃取………………………………...……...……………35 8.2 蛋白質表現載體(Expression vector)…………………….…………35 8.3 蛋白質表現菌株………………………………………………..……35 8.4 麻竹COMT重組蛋白質表現及純化…………...…………………..36 9. 酵素動力學所需藥品……………………………………………………36 10. 酵素動力學反應…………………………………………………………37 10.1 反應條件…………………………………………...………………37 10.2 酵素動力學常數計算……………………………...………………38 V. 結果與討論…………………………………..………………………………39 1. 麻竹稈不同生長階段之木質素染色觀察………………………………39 2. 麻竹稈不同生長階段之化學組成分分析………………………………40 2.1 醣類及醣醛酸含量測定…………………………………………..…40 2.2 木質素含量測定………………………………………………..……41 2.3 木質素單體分析…………………………………………………..…42 3. 麻竹總蛋白反應性………………………………………………...…….43 4. 麻竹COMT基因選殖……………………………………………………45 5. 麻竹COMT序列之親源關係分析…………………………………..….48 6. 麻竹COMT之組織特異性………………………..……………………..50 7. 麻竹COMT重組蛋白質表現及純化…………..……………………….53 8. 酵素動力學反應…………..…………………………….……………….54 8.1 麻竹COMT重組蛋白動力學性質…………..……………………...55 8.2 酵素抑制反應……..…………………………………………….…...58 VI. 結論…………………………………………………..………………………62 VII. 參考文獻………………………………………………………………..……64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 麻竹 | zh_TW |
| dc.subject | 竹稈 | zh_TW |
| dc.subject | 咖啡酸甲氧基轉移? | zh_TW |
| dc.subject | 酵素動力學 | zh_TW |
| dc.subject | 木質素 | zh_TW |
| dc.subject | 組織特異性 | zh_TW |
| dc.subject | 竹稈 | zh_TW |
| dc.subject | 咖啡酸甲氧基轉移? | zh_TW |
| dc.subject | 麻竹 | zh_TW |
| dc.subject | 酵素動力學 | zh_TW |
| dc.subject | 木質素 | zh_TW |
| dc.subject | 組織特異性 | zh_TW |
| dc.subject | Caffeic acid O-methyltransferases | en |
| dc.subject | Bamboo culm | en |
| dc.subject | Tissue specificity | en |
| dc.subject | Lignin | en |
| dc.subject | Bamboo culm | en |
| dc.subject | Dendrocalamus latiflorus | en |
| dc.subject | Caffeic acid O-methyltransferases | en |
| dc.subject | Dendrocalamus latiflorus | en |
| dc.subject | Enzyme kinetics | en |
| dc.subject | Enzyme kinetics | en |
| dc.subject | Lignin | en |
| dc.subject | Tissue specificity | en |
| dc.title | 麻竹稈之木質素特性與其Caffeic acid O-methyltransferase酵素動力學分析 | zh_TW |
| dc.title | Lignin characterization and the enzyme kinetics of caffeic acid O-methyltransferase in Dendrocalamus latiflorus culm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張上鎮,許富蘭,鄭森松,孫英玄 | |
| dc.subject.keyword | 竹稈,咖啡酸甲氧基轉移?,麻竹,酵素動力學,木質素,組織特異性, | zh_TW |
| dc.subject.keyword | Bamboo culm,Caffeic acid O-methyltransferases,Dendrocalamus latiflorus,Enzyme kinetics,Lignin,Tissue specificity, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
