Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉國楨(Kuo-Chen Yeh)
dc.contributor.authorJing-Chi Loen
dc.contributor.author羅靜琪zh_TW
dc.date.accessioned2021-06-15T13:31:12Z-
dc.date.available2021-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-03
dc.identifier.citationAbadia J, Vazquez S, Rellan-Alvarez R, El-Jendoubi H, Abadia A, Alvarez-Fernandez A, Lopez-Millan AF. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry 49(5): 471-482.
Allen MD, del Campo JA, Kropat J, Merchant SS. 2007. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryotic Cell 6(10): 1841-1852.
Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53(372): 1331-1341.
Baginski ES, P. P. FOA, ZAK B. 1967. Determination of phosphate: study of labile organic phosphate interference. Clinica Chimica Acta 15: 155–158.
Barrett-Lennard EG, Marschner H, Romheld V. 1983. Mechanism of Short Term Fe Reduction by Roots : Evidence against the Role of Secreted Reductants. Plant Physiology 73(4): 893-898.
Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2006. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Journal of Biological Chemistry 281(43): 32395-32402.
Bauer P, Ling HQ, Guerinot ML. 2007. FIT, the FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR in Arabidopsis. Plant Physiology and Biochemistry 45(5): 260-261.
Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5): 591-602.
Blachutzik JO, Demir F, Kreuzer I, Hedrich R, Harms GS. 2012. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues. Plant Methods 8(1): 28.
Brumbarova T, Bauer P, Ivanov R. 2014. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Science 20(2):124-33.
Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L. 2010. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329: 1-25.
Chaney RL, Brown JC, Tiffin LO. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology 50(2): 208-213.
Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiology 154(2): 810-819.
Chen YY, Wang Y, Shin LJ, Wu JF, Shanmugam V, Tsednee M, Lo JC, Chen CC, Wu SH, Yeh KC. 2013. Iron is involved in the maintenance of circadian period length in Arabidopsis. Plant Physiology 161(3): 1409-1420.
Chiang HC, Lo JC, Yeh KC. 2006. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environmental Science Technology 40(21): 6792-6798.
Colangelo EP, Guerinot ML. 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16(12): 3400-3412.
Connolly EL, Fett JP, Guerinot ML. 2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14(6): 1347-1357.
Dakora FD, Phillips DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245: 35–47.
Eide D, Broderius M, Fett J, Guerinot ML. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences, USA 93(11): 5624-5628.
Erxleben A, Gessler A, Vervliet-Scheebaum M, Reski R. 2012. Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. Plant Cell Report 31(2): 427-436.
Fourcroy P, Siso-Terraza P, Sudre D, Saviron M, Reyt G, Gaymard F, Abadia A, Abadia J, Alvarez-Fernandez A, Briat JF. 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytologist 201(1): 155-167.
Gensel PG. 2008. The Earliest Land Plants. The Annual Review of Ecology, Evolution, and Systematics 39: 459-477.
Gray J, Chaloner WG, Westoll TS. 1985. The microfossil record of early land plants: advances in understanding of early terrestrialization, 1970–1984. Philosophical Transactions of the Royal Society of London 309: 1934–1990.
Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. 2010. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant Journal 64(2): 355-365.
Grillet L, Ouerdane L, Flis P, Hoang MT, Isaure MP, Lobinski R, Curie C, Mari S. 2014. Ascorbate efflux as a new strategy for iron reduction and transport in plants. Journal of Biological Chemistry 289(5): 2515-2525.
Grusak MA, Welch RM, Kochian LV. 1990. Physiological Characterization of a Single-Gene Mutant of Pisum sativum Exhibiting Excess Iron Accumulation: I. Root Iron Reduction and Iron Uptake. Plant Physiology 93(3): 976-981.
Guelke M, Von Blanckenburg F. 2007. Fractionation of stable iron isotopes in higher plants. Environmental Science & Technology 41(6): 1896-1901.
Guerinot ML. 2000. The ZIP family of metal transporters. Biochimica et Biophysica Acta 1465(1-2): 190-198.
Guerinot ML, Yi Y. 1994. Iron: Nutritious, Noxious, and Not Readily Available. Plant Physiology 104: 815-820.
Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U. 2012. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24(2): 724-737.
Hem JD. 1972. Chemical Factors that Influence the Availability of Iron and Manganese in Aqueous Systems. Geological Society of America Bulletin 83(2): 443-450.
Henriques R, Jasik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C. 2002. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology 50(4-5): 587-597.
Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. 1999. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology 119(2): 471-480.
Hirokawa T, Boon-Chieng S, Mitaku S. 1998. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4): 378-379.
Ho T-Y, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM. 2003. The elemental composition of some marine phytoplankton. Journal of Phycology 39: 145-1159.
Hofmann K, Stoffel W. 1993. TMbase - A database of membrane spanning proteins segments. Journal of Biological Chemistry 374: 166.
Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2006. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant Journal 45(3): 335-346.
Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ. 2007. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiology 144(1): 278-285.
Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8(3): 275-282.
Kato H, Izumi Y, Hasunuma T, Matsuda F, Kondo A. 2012. Widely targeted metabolic profiling analysis of yeast central metabolites. Journal of Bioscience and Bioengineering 113(5): 665-673.
Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P. 2009. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiology 150(1): 257-271.
Kobayashi T, Nishizawa NK. 2012. Iron uptake, translocation, and regulation in higher plants. The Annual Review of Plant Biology 63: 131-152.
Kosegarten HU, Hoffmann B, Mengel K. 1999. Apoplastic pH and Fe(3+) reduction in intact sunflower leaves. Plant Physiology 121(4): 1069-1080.
Kubota A, Ishizaki K, Hosaka M, Kohchi T. 2013. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Bioscience, Biotechnology, and Biochemistry 77(1): 167-172.
Kubota A, Kita S, Ishizaki K, Nishihama R, Yamato KT, Kohchi T. 2014. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nature Communications 5: 3668.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947-2948.
Ledent V, Vervoort M. 2001. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Resarch 11(5): 754-770.
Li S, Zhou X, Huang Y, Zhu L, Zhang S, Zhao Y, Guo J, Chen J, Chen R. 2013. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology 13: 114.
Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC. 2009. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist 182(2): 392-404.
Lindsay WL, Schwab AP. 1982. The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition 5: 821-840.
Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P. 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23(5): 1815-1829.
Lucena C, Waters BM, Romera FJ, Garcia MJ, Morales M, Alcantara E, Perez-Vicente R. 2006. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. Journal of Experimental Botany 57(15): 4145-4154.
Ma JF, Shinada T, Matsuda C, Nomoto K. 1995. Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. Journal of Biological Chemistry 270(28): 16549-16554.
Marschner H. 1995. Mineral nutrition of higher plants. London: Academic. 2nd ed.
Massari ME, Murre C. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology 20(2): 429-440.
Maurer F, Muller S, Bauer P. 2011. Suppression of Fe deficiency gene expression by jasmonate. Plant Physiology and Biochemistry 49(5): 530-536.
Meiser J, Lingam S, Bauer P. 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiology 157(4): 2154-2166.
Miki D, Itoh R, Shimamoto K. 2005. RNA silencing of single and multiple members in a gene family of rice. Plant Physiology 138(4): 1903-1913.
Miki D, Shimamoto K. 2004. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiology 45(4): 490-495.
Millet M-A, Baker JA, Payne CE. 2012. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double spike. Chemical Geology 304-305: 18-25.
Milner MJ, Seamon J, Craft E, Kochian LV. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany 64(1): 369-381.
Minet M, Dufour ME, Lacroute F. 1992. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant Journal 2(3): 417-422.
Mishler BD, Churchill SP. 1984. A cladistic approach to the phylogeny of the “Bryophytes”. Brittonia 36(4): 406-424.
Mita S, Suzuki-Fujii K, Nakamura K. 1995. Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana. Plant Physiology 107(3): 895-904.
Mitaku S, Hirokawa T. 1999. Physicochemical factors for discriminating between soluble and membrane proteins: hydrophobicity of helical segments and protein length. Protein Engineering 12(11): 953-957.
Mitaku S, Hirokawa T, Tsuji T. 2002. Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics 18(4): 608-616.
Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M. 2002. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. The EMBO Journal 21(24): 6709-6720.
Muller M, Schmidt W. 2004. Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiology 134(1): 409-419.
Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T. 2007. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering 104(1): 34-41.
Narayanan NN, Ihemere U, Chiu WT, Siritunga D, Rajamani S, Singh S, Oda S, Sayre RT. 2011. The Iron Assimilatory Protein, FEA1, from Chlamydomonas reinhardtii Facilitates Iron-Specific Metal Uptake in Yeast and Plants. Frontiers in Plant Science 2: 67.
Okumura M, Inoue S, Takahashi K, Ishizaki K, Kohchi T, Kinoshita T. 2012. Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha. Plant Physiology 159(2): 826-834.
Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859): 64-69.
Richard O, Pineau C, Loubet S, Chalies C, Vile D, Marques L, Berthomieu P. 2011. Diversity analysis of the response to Zn within the Arabidopsis thaliana species revealed a low contribution of Zn translocation to Zn tolerance and a new role for Zn in lateral root development. Plant Cell Environment 34(7): 1065-1078.
Robinson NJ, Procter CM, Connolly EL, Guerinot ML. 1999. A ferric-chelate reductase for iron uptake from soils. Nature 397(6721): 694-697.
Rodriguez-Celma J, Lin WD, Fu GM, Abadia J, Lopez-Millan AF, Schmidt W. 2013. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by arabidopsis and Medicago truncatula. Plant Physiology 162(3): 1473-1485.
Rodriguez-Celma J, Va’zquez-Reina Sl, Orduna Js, Abadı’a An, Abadı’a J, lvarez-Ferna’ndez AA, Lo’pez-Milla’n A-F. 2011. Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on Medicago truncatula. Plant Cell Physiology 52(12): 2173–2189.
Romheld V, Marschner H. 1983. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiology 71(4): 949-954.
Romheld V, Marschner H. 1986. Mobilization of iron in the rhizosphere of different plant species. Advances in Plant Nutrition 2: 155-204.
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.
Santi S, Schmidt W. 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist 183(4): 1072-1084.
Schmid NB, Giehl RF, Doll S, Mock HP, Strehmel N, Scheel D, Kong X, Hider RC, von Wiren N. 2014. Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in arabidopsis. Plant Physiology 164(1): 160-172.
Schmidt H, Gunther C, Weber M, Sporlein C, Loscher S, Bottcher C, Schobert R, Clemens S. 2014. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS One 9(7): e102444.
Schmidt W. 1993. Iron stress-induced redox reactions in bean roots. Physiologia Plantarum 89(3): 448-452.
Schmidt W, Tittel J, Schikora A. 2000. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiology 122(4): 1109-1118.
Schuler M, Rellan-Alvarez R, Fink-Straube C, Abadia J, Bauer P. 2012. Nicotianamine functions in the Phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell 24(6): 2380-2400.
Seguela M, Briat JF, Vert G, Curie C. 2008. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant Journal 55(2): 289-300.
Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL, Huang JL, Yeh KC. 2011. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana - the role in zinc tolerance. New Phytologist 190(1): 125-137.
Shaw J, Renzaglia K. 2004. Phylogeny and diversification of bryophytes. American Journal of Botany 91(10): 1557-1581.
Sheen J. 2001. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiology 127(4): 1466-1475.
Shin LJ, Lo JC, Chen GH, Callis J, Fu H, Yeh KC. 2013. IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis. Plant Cell 25(8): 3039-3051.
Shojima S, Nishizawa N-K, Fushiya S, Nozoe S, Irifune T, Mori S. 1990. Biosynthesis of Phytosiderophores : In Vitro Biosynthesis of 2'-Deoxymugineic Acid from l-Methionine and Nicotianamine. Plant Physiology 93(4): 1497-1503.
Sonnhammer EL, von Heijne G, Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings International Conference on Intelligent Systems for Molecular Biology 6: 175-182.
Stein WE, Mannolini F, Hernick LV, Landing E, Berry CM. 2007. Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa. Nature 446(7138): 904-907.
Susin S, Abadia A, Gonzalez-Reyes JA, Lucena JJ, Abadia J. 1996. The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced 'Turbo' Ferric Chelate Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and Isolated Plasma Membrane Fractions in Sugar Beet). Plant Physiology 110(1): 111-123.
Takagi S. 1976. Naturally occurring iron-chelating compounds in oat- and rice-root washings. Soil Science and Plant Nutrition 22(4): 423-433.
Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. 2003. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15(6): 1263-1280.
Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S. 1999. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiology 121(3): 947-956.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10): 2731-2739.
Terrile MC, Paris R, Calderon-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongue CA. 2012. Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant Journal 70(3): 492-500.
Terzulli A, Kosman DJ. 2010. Analysis of the High-Affinity Iron Uptake System at the Chlamydomonas reinhardtii Plasma Membrane. Eukaryotic Cell 9(5): 815-826.
Tsednee M, Mak YW, Chen YR, Yeh KC. 2012. A sensitive LC-ESI-Q-TOF-MS method reveals novel phytosiderophores and phytosiderophore-iron complexes in barley. New Phytologist 195(4): 951-961.
Tsednee M, Yang SC, Lee DC, Yeh KC. 2014. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiology 166(2): 839-852.
Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D. 2002. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant Journal 31(5): 589-599.
Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14(6): 1223-1233.
Victoria Fde C, Bervald CM, da Maia LC, de Sousa RO, Panaud O, de Oliveira AC. 2012. Phylogenetic relationships and selective pressure on gene families related to iron homeostasis in land plants. Genome 55(12): 883-900.
Yan F, Zhu Y, Muller C, Zorb C, Schubert S. 2002. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology 129(1): 50-63.
Yang S-C, Lee D-C, Ho T-Y. 2012. The isotopic composition of Cadmium in the water column of the South China Sea. Geochimica et Cosmochimica Acta 98: 66-77.
Yang TJ, Lin WD, Schmidt W. 2010. Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiology 152(4): 2130-2141.
Yi Y, Guerinot ML. 1996. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant Journal 10(5): 835-844.
Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ. 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Resarch 18(3): 385-397.
Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel. 97-166. Academic Press, New York.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51346-
dc.description.abstract鐵是植物生長所不可或缺的元素,自然環境下以氧化鐵的形式存在並附著於土壤粒子中。為了吸收鐵,植物發展出不同的吸收策略。被子植物中非禾本科植物使用鐵還原吸收策略一, 而禾本科植物則使用鐵螯合吸收策略二。目前開花植物和藻類鐵吸收的機制所知甚詳,但對於蘚苔植物的認識卻很匱乏。蘚苔植物是陸生植物最早期的分支類群,在植物演化過程中具有其舉足輕重之地位。本研究以蘚苔植物中的模式植物-地錢(Marchantia polymorpha)和小立碗蘚(Physcomitrella patens)為研究對象,發現地錢使用鐵還原吸收策略一、而小立碗蘚卻使用鐵螯合吸收策略二。缺鐵逆境下,地錢體內FRO和H+-ATPase的活性會提高。此外,地錢缺乏鐵螯合吸收策略中最重要的化合物-phytosiderphores、nicotianamine(NA)和 NA合成酶,這意味著地錢不使用此策略。地錢基因組內有五個和鐵鋅運輸相關之基因,缺乏鐵鋅運輸基因(MpZIP3)的地錢突變株在缺鐵逆境下,體內鐵含量下降;反之若大量表現此基因,則轉殖株體內鐵含量增加。由此可知MpZIP3基因參與鐵的吸收機制。因此我們可以得到結論,地錢和大多數的陸生植物相同,使用還原策略吸收鐵元素。另一方面,鐵同位素分析得知小立碗蘚使用鐵螯合吸收策略二。小立碗蘚體內NA的含量會隨著缺鐵天數的增加而增加,但卻沒有發現phytosiderphores的存在。NA在維管束植物體內扮演鐵、鋅等重金屬的螯合劑與長距離運輸之角色,這意味著小立碗蘚可能直接利用NA做為三價鐵的螯合物。有趣的是,小立碗蘚基因組裡可以同時找到鐵還原及螯合吸收策略相關的基因群;暗示著小立碗蘚可能同時使用此兩種策略。綜合本研究之成果,我們得知鐵還原吸收策略普遍存在於陸生植物當中,而鐵螯合吸收策略則是植物為了適應環境所另行演化出來。本研究對於陸生植物鐵吸收機制之演化過程,提供了一個重要的連結。zh_TW
dc.description.abstractTo acquire appropriate Fe, flowering plants have developed two unique strategies, the reduction-based Strategy I of non-graminaceous plants for Fe2+ and the chelation-based Strategy II of graminaceous plants for Fe3+. However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha and moss Physcomitrella patens use reduction-based and chelation-based Fe acquisition, respectively. In M. polymorpha, enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of Strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses Strategy I for Fe acquisition. Interestingly, Fe uptake related genes involved in both reduction- and chelation- based strategies were identified in the moss Physcomitrella patens transcriptome database. Although the relative abundance of nicotianamine was increased under Fe deficiency, none of known phytosiderophores were found in the moss. NA plays important roles of Fe/Zn chelation and transport in plants. It implied that P. paten might use NA directly for Fe chelation. These findings also suggested that the reduction system was acquired in the green lineage, and unique strategy for Fe uptake was developed in P. paten. This system may have been acquired in the common ancestor of land plants and co-opted from the gametophyte to sporophyte generation in the evolution of land plants.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:31:12Z (GMT). No. of bitstreams: 1
ntu-105-D96b42011-1.pdf: 4057478 bytes, checksum: af818834928d4a40fbdeaa159d302102 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
摘要 3
ABSTRACT 5
CONTENTS 7
TABLES 9
FIGURES 10
Introduction 12
The importance of Fe in plant growth 12
Reduction-based Strategy I is employed by non-graminaceous plants 13
Chelation-based Strategy II is employed by graminaceous plants 14
The strategies of Fe acquisition in alga 15
Objectives and current findings 15
Materials and Methods 17
Plant materials and growth conditions 17
Plasma membrane isolation and H+-ATPase activity determination 18
Ferric chelate reductase activity assay 19
Sequence retrieval and phylogenetic analysis 19
RNA isolation, cDNA synthesis and quantitative real-time PCR 20
Yeast growth, functional complementation test and Fe content measurement 21
Isotopic Fe purification and fractionation analysis 22
Detection of NA, PSs and derivatives 23
Quantification of organic acids 24
Generation of transgenic lines in M. polymorpha 25
Subcellular localization of MpZIP3 25
Measurement of metal contents 26
Statistical analysis 26
Accession numbers 26
Results 30
M. polymorpha uses reduction-based Fe acquisition 30
Induction of ferric-chelate reductase and H+-ATPase under Fe deficiency 31
Characteristics of ZIP proteins in M. polymorpha 32
MpZIPs that may function as Fe2+ transporters 33
MpZIPs also contributes to the uptake of Zn and Mn in M. polymorpha 34
MpZIP3 contributes to Fe acquisition in M. polymorpha 34
MpFITs are regulated by Fe at the transcriptional level 36
The chelation-based strategy is used by P. patens 36
Nicotianamine might be required for Fe3+ chelation 37
Discussion and Future Work 38
References 70
dc.language.isoen
dc.title蘚苔植物鐵吸收策略與演化之研究zh_TW
dc.titleAnalysis of iron acquisition systems and their evolution in bryophytesen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.coadvisor施明哲(Ming-Che Shih)
dc.contributor.oralexamcommittee胡哲明(Jer-Ming Hu),常怡雍(Yee-yung Charng),靳宗洛(Tsung-Lio Jinn)
dc.subject.keyword蘚苔植物,地錢,小立碗蘚,鐵還原吸收策略一,鐵螯合吸收策略二,zh_TW
dc.subject.keywordFe acquisition,reduction-based strategy,chelation-based strategy,ZIP,nicotianamine,bryophyte,Marchantia polymorpha,liverwort,Physcomitrella patens,moss,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2016-02-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved