Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51342
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮(Shang-Li Wang)
dc.contributor.authorJIE-CHENG CHANGen
dc.contributor.author張傑誠zh_TW
dc.date.accessioned2021-06-15T13:31:05Z-
dc.date.available2021-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-03
dc.identifier.citation行政院環保署環境檢驗所。2003。土壤中重金屬檢測方法—王水消化法。 (NIEAS 321.63B)
Ahmad, A.R., Nye, P.H. 1990. Coupled diffusion and oxidation of ferrous iron in soils. I. Kinetics of oxygenation of ferrous iron in soil suspension. Journal of Soil Science, 41, 395-409.
Alphei, J., Scheu, S. 1993. Effects of biocidal treatments on biological and nutritional properties of a mull-structured woodland soil. in: Soil Structure/Soil Biota Interrelationships, L.B.J. Kooistra, Ed. Elsevier. Amsterdam, pp.435-448.
Appel, C., Ma, L.Q., Rhue, R.D., Reve, W. 2008. Sequential sorption of lead and cadmium in three tropical soils. Environmental Pollution, 155, 132-140.
Arao, T., Kawasaki, A., Baba, K., Mori, S., Matsumoto, S. 2009. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in japanese rice. Environmental Science & Technology, 43, 9361-9367.
Armstron, W. 1969. Rhizosphere oxidation in rice - an analysis of intervarietal differences in oxygen flux from roots. Physiologia Plantarum, 22, 296-303.
Armstron, W. 1970. Rhizosphere oxidation in rice and other species - a mathematical model based on oxygen flux component. Physiologia Plantarum, 23, 623-630.
Armstron, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from apex, respiration and waterlogging. Physiologia Plantarum, 25, 192-197.
Balashova, V.V., Zavarzin, G.A. 1979. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology, 48, 635-639.
Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F., Neue, H.U. 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist, 128, 469-477.
Colmer, T.D. 2002. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep‐water rice (Oryza sativa L.). Annals of Botany, 91, 301-309.
Curl, E.A., Truelove, B. 1986. The rhizosphere. Springer, Berlin, New York.
Da Silva, M.J., Paim, A.P.S., Pimentel, M.F., Cervera, M.L., De la Guardia, M. 2010. Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion. Analytica chimica acta, 667, 43-48.
de Livera, J., McLaughlin, M.J., Beak, D., Hettiarachchi, G.M., Kirby, J. 2011a. Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals. Soil Science Society of America Journal, 75, 842-854.
de Livera, J., McLaughlin, M.J., Hettiarachchi, G.M., Kirby, J.K., Beak, D.G. 2011b. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Science of the Total Environment, 409, 1489-1497.
Fan, J.-B., Zhang, Y.-L., Turner, D., Duan, Y.-H., Wang, D.-S., Shen, Q.-R. 2010. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere, 20, 446-455.
Fulda, B., Voegelin, A., Kretzschmar, R. 2013. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science & Technology, 47, 12775-83.
Gao, S., Tanji, K.K., Scardaci, S.C., Chow, A.T. 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil Science Society of America Journal, 66, 805-817.
Gee, G.W., Bauder, J.W. 1979. Particle-size analysis by hydrometer - simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43, 1004-1007.
Golden, D.C., Turner, F.T., SittertzBhatkar, H., Dixon, J.B. 1997b. Seasonally precipitated iron oxides in a vertisol of southeast Texas. Soil Science Society of America Journal, 61, 958-964.
Hashimoto, Y., Yamaguchi, N. 2013. Chemical speciation of cadmium and sulfur K-Edge XANES spectroscopy in flooded paddy soils amended with zerovalent iron. Soil Science Society of America Journal, 77, 1189-1198.
Iimura, K. 1981. Heavy metal problems in paddy soils in paddy soil. In: Heavy Metal Pollution in soils of Japan, K. Kitagishi et al.,Ed. Japan Scientific Societies Press. Tokyo, pp. 37−50.
Inahara, M., Ogawa, Y., Azuma, H. 2007. Countermeasure by means of flooding in latter growth stage to restrain cadmium uptake by lowland rice. Journal of the Science of Soil and Plant Nutrition, Japan, 78, 149-155.
Jackson, M.B., Armstrong, W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1, 274-287.
Justin, S.H.F.W., Armstrong, W. 1987. The anatomical characteristics of roots and plant response to soil flooding. The New Phytologist, 106, 465-495.
Kogel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kolbl, A., Schloter, M. 2010. Biogeochemistry of paddy soils. Geoderma, 157, 1-14.
Kirk, G.J.D., Ahmad, A.R., Nye, P.H. 1990. Coupled diffusion and oxidation of ferrous iron in soils. 11. A model of the diffusion and reaction of O2- ,Fe2+ ,H+ and HCO3- in soils and a sensitivity analysis of the model. Journal of Soil Science, 41, 411-431.
Kirk, G.J.D., Bajita, J.B. 1995. Root-Induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytologist, 131, 129-137.
Labrenz, M., Banfield, F.J. 2004. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microbial Ecology, 47, 205-217.
Lemon, E.R., Erickson, A.E. 1952. The measurement of oxygen diffusion in the soil with a platinum microelectrode. Soil Science Society of America Proceedings, 16, 160-163.
Li, Y., Yu, S., Strong, J., Wang, H. 2012. Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? Journal of Soils and Sediments, 12, 683-693.
Liesack, W., Schnell, S., Revsbech, N.P. 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24, 625-645.
Lindsay, W.L. 1979. Chemical equilibria in soils. John Wiley and Sons Ltd, Chichester, UK.
Liu, H., Zhang, J., Christie, P., Zhang, F. 2008. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 394, 361-368.
Liu, W., Zhu, Y., Smith, F., Smith, S. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany, 55, 1707-1713.
Lovley, D.R., Phillips, E.J.P. 1988. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiology Journal, 6, 145-155.
Magneschi, L., Perata, P. 2009. Rice germination and seedling growth in the absence of oxygen. Annals of Botany, 103, 181-196.
Mahmood, T., Mehnaz, S., Fleischmann, F., Ali, R., Hashmi, Z.H., Iqbal, Z. 2014. Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings. Pedobiologia, 57, 123-130.
MartInez, C.E., McBride, M.B., Kandianis, M.T., Duxbury, J.M., Yoon, S.-j., Bleam, W.F. 2002. Zinc−sulfur and cadmium−sulfur association in metalliferous peats:  evidence from spectroscopy, distribution coefficients, and phytoavailability. Environmental Science & Technology, 36, 3683-3689.
McBride, M.B. 1994. Environmental chemistry of soils. Oxford University Press. New York, USA.
McLean, E.O. 1982. Chemical equilibrations with soil buffer systems as bases for future soil testing programs. Communications in Soil Science and Plant Analysis, 13, 411-433.
McNamara, N.P., Black, H.I.J., Beresford, N.A., Parekh, N.R. 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Applied Soil Ecology, 24, 117-132.
Mei, X.Q., Wong, M.H., Yang, Y., Dong, H.Y., Qiu, R.L., Ye, Z.H. 2012. The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environmental Pollution, 165, 109-117.
Mei, X.Q., Ye, Z.H., Wong, M.H. 2009. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environmental Pollution, 157, 2550-2557.
Murase, J., Kimura, M. 1997. Anaerobic reoxidation of Mn2+ , Fe2+ , S- and S2- in submerged paddy soils. Biology and Fertility of Soils, 25, 302-306.
Myers, B.M., Prendergast, F.G., Larusso, N.F. 1988. Experimental iron overload increases the pH of Hepatocyte Lysosomes. Hepatology, 8, 1240-1240.
Nakanishi, H., Ogawa, I., Ishimaru, Y., Mori, S., Nishizawa, N.K. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 52, 464-469.
Nelson, D.W., Sommers, L.E. 1986.Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, A.L. Page et al., Ed. Madison: American Society of Agronomy, pp. 961-1010, WI.
Neubauer, S.C., Megonigal, J.P. 2007. Microbial oxidation and reduction of iron in the root zone and influences on metal mobility. John Wiley & Sons. Inc. New jersey, USA.
Olson, R.V., Ellis, R. Jr. 1982. Methods of soil chemical analysis Part 2. Chemical and Mineralogical Properties, A.L. Page et al., Ed. Madison: American Society of Agronomy, pp. 301-312, WI.
Otte, M.L., Rozema, J., Koster, L., Haarsma, M.S., Broekman, R.A. 1989. Iron plaque on roots of Aster-Tripolium L - interaction with zinc uptake. New Phytologist, 111, 309-317.
Patrick, W.H., Jugsujinda, A. 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Science Society of America Journal, 56, 1071-1073.
Ponnampe.Fn, Yuan, W.L., Nhung, M.T.M. 1965. Manganese dioxide as a remedy for a physiological disease of rice associated with reduction of soil. Nature, 207, 1103-1104.
Ponnamperuma, F.N. 1972. The Chemistry of Submerged Soils. Advances in Agronom, 24, 29-96.
Ratering, S., Conrad, R. 1998. Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Global Change Biology, 4, 397-407.
Ratering, S., Schnell, S. 2000. Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry, 48, 341-365.
Rhoades, J.D. 1993. Electrical-conductivity methods for measuring and mapping soil-salinity. Advances in Agronomy, 49, 201-251.
Sarwar, N., Saifullah, Malhi, S.S., Zia, M.H., Naeem, A., Bibi, S., Farid, G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925-937.
Sauve, S., Hendershot, W., Allen, H.E. 2000. Solid-solution partitioning of metals in contaminated soils:  dependence on pH, total metal burden, and organic matter. Environmental Science & Technology, 34, 1125-1131.
Sebastian, A., Prasad, M.N.V. 2013. Cadmium minimization in rice. a review. Agronomy for Sustainable Development, 34, 155-173.
Shao, G.S., Chen, M.X., Wang, D.Y., Xu, C.M., Mou, R.X., Cao, Z.Y., Zhang, X.F. 2008. Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology. Science in China Series C-Life Sciences, 51, 245-253.
So, H.B., Kirchhof, G. 2000. Management of clay soils for rainfed lowland rice-based cropping systems. Soil & Tillage Research, 56, 1-2.
Soil Survey Staff. 2014. Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington DC, USA.
Tanji, K.K., Gao, S., Scardaci, S.C., Chow, A.T. 2003. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma, 114, 333-353.
Taylor, G.J., Crowder, A.A., Rodden, R. 1984. Formation and morphology of an iron plaque on the roots of Typha latifolia L. Grown in Solution Culture. American Journal of Botany, 71, 666-675.
Traina S.J. 1999. The Environmental Chemistry of Cadmium, in: Cadmium in Soils and Plants, M. J. McLaughlin et al., Ed. Springer, pp.11-37, Netherlands, Dordrecht.
Wang, M.Y., Chen, A.K., Wong, M.H., Qiu, R.L., Cheng, H., Ye, Z.H. 2011. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environmental Pollution, 159, 1730-1736.
Wang, X., Yao, H., Wong, M., Ye, Z. 2013. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environmental Geochemistry and Health, 35, 779-788.
Wiedemeier, T.H. 1999 Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons. Inc. New York, USA.
Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., Amachi, S., Makino, T. 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 83, 925-32.
Yoshida, S., Forno, D., Cock, J., Gomez, K. 1976. Routine procedure for growing rice plants in culture solution. In: Laboratory Manual for Physiological Studies of Rice, pp.61-66, Los Banos, Phillipines.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51342-
dc.description.abstract水稻生長於浸水土壤中,在土壤後土壤通氣受阻下,土壤逐漸以厭氧呼吸的微生物為主,並導致一序列的還原反應發生。水稻根圈因根系的徑向泌氧(radial oxygen loss, ROL)與分泌物等,導致根圈與本體土壤間氧化還原的空間變異。本研究的目的希冀探討根圈與本體土壤間氧化還原條件的空間變異,是否將會驅使鐵與鎘在不同的位置累積而移動,進而影響水稻根的吸收。透過土壤浸水孵育實驗,觀察浸水土壤的鐵、鎘釋出隨時間的變化;接著利用水稻根盤與根圈箱試驗觀察根表不同距離之土壤溶液中鐵與鎘的濃度變化,藉此探討根圈與本體土壤間鐵與鎘的移動及累積情形。研究結果顯示,土壤隨著浸水時間的增加,鐵會大量的溶解釋出,而鎘在浸水後期則逐漸降低,因此鐵與鎘在土壤中的有效性會受氧化還原程度的影響。根圈箱試驗的結果中根圈與本體土壤間鐵皆產生一濃度梯度,顯示根圈與本體土壤氧化還原電位的差異下,造成鐵的移動並累積於根圈。將土壤XANES圖譜以線性擬合之結果顯示土壤與水稻根盤接觸後,根圈處纖鐵礦(lepidocrocite)的組成增加(45.7至63.1 %)。過去研究顯示此類鐵氫氧化物對鎘有很好的蓄積能力,因此就土壤溶液中鎘的濃度變化,推測鎘在根圈被吸附聚集而降低。此外根圈處有明顯的硫酸根的釋出,因此判斷在還原環境所生成之硫化物物種(CdS)在根圈處受根系再氧化生成易溶解之硫酸鹽物種(CdSO4)導致水稻根對於鎘的吸收量增加。zh_TW
dc.description.abstractWhen a soil is under submerging condition, the water layer above the soil cuts off the oxygen supplying from the air. As a consequence, anaerobic respiration of soil microbial drives the occurrence of a series of reduction reactions. The excretion of oxygen from rice roots result in the oxidized condition in the rice rhizosphere, which may result in a redox gradient from rice rhizosphere to bulk soil. Therefore, it is hypothesized that this redox gradient may lead to the spatial distribution of iron and cadmium between rice rhizosphere and bulk soils, and subsequently affect their uptakes by rice roots. Soil incubation and rhizobox experiments were applied to the study the concentration of iron and cadmium in soil solution as a function of time, and the spatial distributions of iron and cadmium in soil solution, respectively. The results of soil incubation experiment showed that the concentration of ferrous ion in soil solution increased with the time of submergence, while the concentration of cadmium decreased gradually. The difference between the redox conditions in the rhizosphere and bulk soils induced the accumulation of iron in the rhizosphere of rice. The linear combination fitting (LCF) results of Fe k-edge XANES spectra of the soil samples shows that the formation of lepidocrocite in the rhizosphere (63.1 %) was higher than that in the corresponding bulk soil (45.7 %). Accordingly, ferrous ions were oxidized in the rice rhizosphere, leading to precipitation of Fe in the rice rhizosphere, On the other hand, the decrease of Cd concentration in soil solutions from the bulk to rhizosphere soils indicated the absorption of cadmium by ferric hydroxides. In addition, the concentration of sulfate in the rice rhizosphere was higher than the counterpart in the bulk. This indicates that the oxidation of reduced S species (e.g., CdS) in rice rhizosphere may be responsible for the release of Cd, which was then absorbed by rice roots.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:31:05Z (GMT). No. of bitstreams: 1
ntu-105-R02623014-1.pdf: 5366400 bytes, checksum: e01ba64d1febe812d9a1593af98afaa2 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄 i
摘要 iii
Abstract iv
圖目錄 vi
表目錄 viii
第一章、前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章、文獻回顧 3
2-1、水田土壤特性 3
2-2、水稻根圈 5
2-3、水田土壤中的鐵 7
2-4、水稻根圈與鐵 8
2-5、水田土壤中的鎘 9
2-6、水稻根圈與鎘 10
第三章、材料與方法 11
3.1土壤特性分析 11
3.1.1供試土壤 11
3.1.2土壤基本特性分析 11
3.2 探討土壤在浸水環境下鐵和鎘的釋出情形 14
3.2.1 土壤浸水孵育實驗 14
3.3 探討水稻在浸水環境下其根系對土壤中鐵與鎘分佈的影響 15
3.3.1 水稻根盤 (rice roots plane) 15
3.3.2 根圈箱(rhizobox) 19
第四章、結果與討論 25
4.1探討土壤在浸水環境下鐵和鎘的釋出情形 25
4.1.1 供試土壤基本性質 25
4.1.2土壤浸水孵育實驗溶液鐵、鎘濃度的變化 27
4.2探討水稻在浸水環境下其根系對土壤中鐵與鎘分佈的影響 32
4.2.1根圈與本體土壤基本性質 32
4.2.2水稻根圈與本體土壤間鐵濃度的變化 34
4.2.3滅菌土壤之水稻根圈與本體土壤間鐵濃度的變化 37
4.2.4水稻根圈與本體土壤之鐵物種分佈 39
4.2.3 水稻根圈與本體土壤間土壤溶液鎘濃度的變化 44
4.2.4 水稻根圈與本體土壤間土壤溶液硫酸根濃度的變化 47
4.2.5植體中鐵的累積 50
4.2.6植體中鎘的累積 52
第五章、結論 54
第六章、參考文獻 55
dc.language.isozh-TW
dc.title探討浸水土壤中水稻根系對鐵和鎘分佈的影響zh_TW
dc.titleThe Spatial Distribution of Iron and Cadmium in a Submerged soil under the Influence of Rice Rootsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王明光(Ming-Kuang Wang),鄒裕民(Yu-Ming Tzou),劉雨庭(Yu-Ting Liu)
dc.subject.keyword鎘,鐵,氧化還原,水稻根圈,zh_TW
dc.subject.keywordCadmium,Iron,Oxidation-Reduction,Rice rhizosphere,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2016-02-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved