Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51341
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭貽生
dc.contributor.authorPei-Hsuan Linen
dc.contributor.author林佩璇zh_TW
dc.date.accessioned2021-06-15T13:31:03Z-
dc.date.available2016-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-03
dc.identifier.citationAllen, M.D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., and Suzuki, M. (1998). A novel mode of DNA recognition by a b-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal 17, 5484–5496.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.
Berrocal-Lobo, M., Molina, A., and Solano, R. (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant Journal 29, 23-32.
Boer, D.R., Freire-Rios, A., Berg, W.A.M.v.d., Saaki, T., Manfield, I.W., Kepinski, S., pez-Vidrieo, I.L., Franco-Zorrilla, J.M., Sacco C. de Vries, R.S., Weijers, D., and Coll, a.M. (2014). Structural basis for dna binding specificity by the auxin-dependent arf transcription factors. Cell Research 156, 577–589.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
Catinot, J., Huang, J.-B., Huang, P.-Y., Tseng, M.-Y., Chen, Y.-L., Gu, S.-Y., Lo, W.-S., Wang, L.-C., Chen, Y.-R., and Zimmerli, L. (2015). ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate and ethylene-responsive defence genes. Plant, Cell and Environment 38, 2721-2734.
Çevik, V., Kidd, B.N., Zhang, P., Hill, C., Kiddle, S., Denby, K.J., Holub, E.B., Cahill, D.M., Manners, J.M., Peer M. Schenk, J.B., and Kazan, K. (2012). MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiology 160, 541–555.
Cheng, M.-C., Liao, P.-M., Kuo, W.-W., and Lin, T.-P. (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology 162, 1566–1582.
Després, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. (2000). The Arabidopsis NPR1/NIM1 protein enhances the dna binding activity of a subgroup of the tga family of bzip transcription factors. Plant Cell 12, 279–290.
Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q., Gerentes, D., Perez, P., and Smyth, D.R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8, 155–168.
Fits, L.v.d., and Memelink, J. (2000). ORCA3, a jasmonate- responsive transcriptional regulator of plant primary and secondary metabolism. SCIENCE 289, 295-297.
Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell 12, 393–404.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, J.M. Walker, ed (Humana Press), pp. 571-607
Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43, 205–227.
Gu, Y.-Q., Wildermuth, M.C., Chakravarthy, S., Loh, Y.-T., Yang, C., He, X., Han, Y., and Martin, G.B. (2002). Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14, 817–831.
Gutterson, N., and Reuber, T.L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology 4, 465–471.
Hall, Q., and Cannon, M.C. (2002). The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 14, 1161-1172.
Hao, D., Ohme-Takagi, M., and Sarai, A. (1998). Unique mode of GCC Box recognition by the DNA-binding Domain of ethylene-responsive element-binding factor (ERF Domain) in plant. The Journal of Biological Chemistry 273, 26857–26861.
Heffler, M.A., Walters, R.D., and Kugel, J.F. (2012). Using electrophoretic mobility shift assays to measure equilibrium dissociation constants: GAL4-p53 Binding DNA as a model system. The International Union of Biochemistry and Molecular Biology 40, 383–387.
Hu, Y.X., Wang, Y.H., Liu, X.F., and Li, J.Y. (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research 14, 8–15.
Ingle, R.A., Stoker, C., Stone, W., Adams, N., Smith, R., Grant, M., Carre, I., Roden, L.C., and Denby, K.J. (2015). Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea. Plant Journal 84, 937-948
Jofuku, K.D., Boer, B.G.d., Montagu, M.V., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211–1225.
Kariola, T., Brader, G., Li, J., and Palva, E.T. (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17, 282-294.
Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in plant science 20, 219-229.
Lee, S.-j., Park, J.H., Lee, M.H., Yu, J.-h., and Kim, S.Y. (2010). Isolation and functional characterization of CE1 binding proteins. BMC plant biology 10, 277.
Licausi, F., Ohme-Takagi, M., and Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199, 639–649.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozakib, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.
Manners, J.M., Penninckx, I.A.M.A., Vermaere, K., Kazan, K., L.Brown, R., Morgan, A., Maclean, D.J., Curtis, M.D., Cammue, B.P.A., and Broekaert, W.F. (1998). The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology 38, 1071–1080.
Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta 1819, 86–96.
Moerke, N.J. (2009). Fluorescence polarization (FP) assays for monitoring peptide-protein or nucleic acid–protein binding. Current Protocols in Chemical Biology 1, 1-15.
Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, a.H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiology 140, 411–432.
Novillo, F., Medina, J., and Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America 104, 21002–21007.
Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-lnducible DNA Binding proteins that lnteract with an ethylene-responsive element. Plant Cell 7, 173-182.
On˜ate-Sa´nchez, L., Anderson, J.P., Young, J., and Singh, K.B. (2007). AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiology 143, 400–409.
Onate-Sanchez, L., and Singh, K.B. (2002). Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiology 128, 1313-1322.
Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nature chemical biology 5, 308-316.
Pre, M., Atallah, M., Champion, A., Vos, M.D., Pieterse, C.M.J., and Memelink, J. (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology 147, 1347-1357.
Radwanski, E.R., Zhao, J., and Last, R.L. (1995). Arabidopsis thaliana tryptophan synthase alpha: gene cloning, expression, and subunit interaction. Molecular Genetics and Genomics 248, 657-667.
Schenk, N., Schelbert, S., Kanwischer, M., Goldschmidt, E.E., Dormann, P., and Hortensteiner, S. (2007). The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS letters 581, 5517-5525.
Sengupta, D., Naik, D., and Reddy, A.R. (2015). Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. Journal of Plant Physiology 179, 40–55.
Shinshi, H., Usami, S., and Ohme-Takagi, M. (1995). Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Molecular Biology 27, 923-932.
Shoji, T., Kajikawa, M., and Hashimoto, T. (2010). Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22, 3390–3409.
Shoji, T., Mishima, M., and Hashimoto, T. (2013). Divergent DNA-binding specificities of a group of ETHYLENE RESPONSE FACTOR transcription factors involved in plant defense. Plant Physiology 162, 977–990.
Simpson, P.J., Tantitadapitak, C., Reed, A.M., Mather, O.C., Bunce, C.M., White, S.A., and Ride, J.P. (2009). Characterization of two novel aldo–keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. Journal of Molecular Biology 392, 465–480.
Thilmony, R., Underwood, W., and He, S.Y. (2006). Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant journal 46, 34-53.
Tiwari, S.B., Belachew, A., Ma, S.F., Young, M., Ade, J., Shen, Y., Marion, C.M., Holtan, H.E., Bailey, A., Stone, J.K., Edwards, L., Wallace, A.D., Canales, R.D., Adam, L., Ratcliffe, O.J., and Repetti, P.P. (2012). The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. Plant Journal 70, 855–865.
Zander, M., Thurow, C., and Gatz, C. (2014). TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression. Plant Physiology 165, 1671–1683.
Zhang, H., Huang, L., Dai, Y., Liu, S., Hong, Y., Tian, L., Lihong Huang, Cao, Z., Li, D., and Song, F. (2015). Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea. Frontiers in plant science 6, 1-13.
Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X. (1996). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proceedings of the National Academy of Sciences of the United States of America 96, 6523–6528.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51341-
dc.description.abstractEthylene response factors (ERFs)是一群在植物中參與生物與非生物逆境的特有轉錄因子,ERF96屬於其中分類第九族的成員,擁有一個會結合GCC box (AGCCGCC)的高保守性DNA binding domain名為AP2/ERF domain,前人研究ERF96在病原菌感染後,被大量誘導,以參與植物防禦反應,由於植物ERF蛋白之功能分析不多,本論文分析ERF96重組蛋白及其關鍵胺基酸與特定DNA序列結合,探討植物ERFs在對抗逆境時的可能分子機制。
本研究利用膠體過濾層析法與動態光散色儀分析,確認ERF96在溶液中為單體,且均勻穩定存在於溶液中。利用螢光電泳遷移率實驗分析ERF96與不同長度的GCC box親和性,結果顯示核心序列外的核酸長度與序列影響ERF96 R16A、W23A、R31A、W41A的結合能力。利用定點突變分析ERF96上的R16A、R19A、R21A、W23A、R31A、R39A、W41A與GCC box結合,經由螢光電泳遷移率實驗與偏極螢光實驗,發現單點突變仍具有結合能力,雙點突變(R19AR21A、R31AR39A)後之結合能力則大幅下降。在不同DNA序列的研究中,發現ERF96與其他非GCC box序列(P box、CS1 box)具有結合能力。總結以上結果,ERF96在溶液中,以單體存在,主要以Arg19、Arg21、Arg31、Arg39與GCC box 結合,除此之外,ERF96亦會與P box、CS1 box、DRE box結合,推測ERFs將可能參與調控相關基因的轉錄起始。
zh_TW
dc.description.abstractEthylene response factors (ERFs) belong to a large family of plant-specific transcription factors which participate in biotic and abiotic stresses in plants. ERF96 has been classified as group IX and contains one conserved DNA binding domain named AP2/ERF domain, which specifically binds to GCC box (AGCCGCC). Previous study demonstrated that ERF96 involved in plant defense response. Since functional analysis for ERF proteins is still rare, we aim to study the molecular mechanism of ERF96 protein binding to GCC box or other non-GCC box sequences.
Size-exclusive chromatography and dynamic light scattering identified that full-length recombinant ERF96 is monomer and mono-disperse in the solution. Fluorescein-based electrophoretic mobility shift assay (fEMSA) showed the binding ability of ERF96 to different lengths of GCC box, and the results indicated that flanking region of GCC box influence binding affinity of R16A, W23A, R31A and W41A. Site-directed mutagenesis of ERF96 with R16A, R19A, R21A, W23A, R31A, R39A, and W41A indicated that there is no significant change of binding ability in ERF96 single mutation. However, the binding of ERF96 was abolished in double mutation with R19AR21A and R31AR39A. This results showed that Arg19, Arg21, Arg31, and Arg39 are the important residues for DNA binding. Furthermore, we examined binding ability of ERF96 to non-GCC box sequence, such as P box, CS1 box, and DRE box. The results indicated that ERF96 can bind to P box, CS1 box and DRE box. Taken together, recombinant ERF96 showed the monomer form in solution and Arg19, Arg21, Arg31, and Arg39 of ERF96 are the key residues to bind to GCC box DNA. In addition, ERF96 not only bound to GCC box, but also could bind to P box, CS1 box and DRE box. We proposed that ERFs transcription factor might involve in the transcription activation via non-GCC box binding ability.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:31:03Z (GMT). No. of bitstreams: 1
ntu-105-R02b42011-1.pdf: 5630874 bytes, checksum: b090cb89f16b371307707a509863b01b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 vii
附錄目錄 viii
縮寫對照表 x
第一章 前言 1
1.1. 植物逆境反應 1
1.2. 乙烯反應因子 (Ethylene Response Factors, ERFs) 家族 2
1.3. 乙烯反應因子第九群(ERF Group IX) 3
1.4. 乙烯反應因子96 (Ethylene Response Factor 96, ERF96) 5
1.5. 乙烯轉錄因子之蛋白質結構 6
1.6. 研究目標 6
第二章 材料與方法 8
2.1. 實驗材料 8
2.2. 實驗方法 8
2.2.1. 蛋白質表現與純化 8
2.2.1.1. 勝任細胞(Competent cell)之製備 8
2.2.1.2. 轉型作用(Transformation) 8
2.2.1.3. 蛋白質大量表現與純化 9
2.2.1.4. SDS-聚丙烯醯胺膠體電泳(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis, SDS-PAGE) 10
2.2.1.5. 蛋白質定量分析 11
2.2.2. 重組蛋白ERF96的多聚體組成分析 11
2.2.2.1. 膠體過濾層析法(Size-exclusion chromatography, SEC) 11
2.2.2.2. 動態光散射儀分析(Dynamic light scattering, DLS) 12
2.2.3. ERF96與DNA結合能力分析 12
2.2.3.1. 膠體過濾層析法(Size exclusion chromatography, SEC) 12
2.2.3.1.1. 雙股DNA製備 12
2.2.3.1.2. 膠體過濾層析實驗 13
2.2.3.2. 螢光電泳遷移率實驗(Fluorescein-based electrophoretic mobility shift assay, fEMSA) 13
2.2.3.2.1. 雙股DNA製備 14
2.2.3.2.2. 膠體製備 14
2.2.3.2.3. 原態聚丙烯醯胺膠體電泳(Native-PAGE) 14
2.2.3.2.4. 數據分析 15
2.2.3.3. 偏極螢光實驗(Fluorescence Polarization, FP) 15
2.2.3.3.1. 雙股DNA製備 15
2.2.3.3.2. 樣品製備 15
2.2.3.3.3. 螢光值測定 16
2.2.3.3.4. 數據分析 16
2.2.4. ERF96 ERF domain結構模型的建立 17
第三章 結果 18
3.1 ERF96蛋白質表現與純化 18
3.2 重組蛋白ERF96的均質性(homogeneity)分析 18
3.3 鹽濃度對ERF96結合能力的影響 20
3.4 利用fEMSA分析ERF96與其突變蛋白質對不同長度GCC-boxes的結合能力 21
3.5 ERF96及其突變蛋白質對GCC12的結合常數測定 23
3.6 ERF96序列結合特異性(binding specificity)分析 24
第四章 討論 26
4.1 ERF96以單體的形式均質存在於溶液中 26
4.2 不同長度的GCC boxes影響ERF96的結合能力 26
4.3 雙點突變蛋白質破壞ERF96與DNA結合的能力 27
4.4 ERF96具有結合P box與CS1 box等非GCC box序列的能力 29
第五章 結論 31
參考文獻 32
圖表 37
附錄 54
附圖 60
附表 75
dc.language.isozh-TW
dc.subject生物逆境zh_TW
dc.subject轉錄因子zh_TW
dc.subject轉錄因子zh_TW
dc.subjectAP2/ERF domainzh_TW
dc.subjectAP2/ERF domainzh_TW
dc.subject生物逆境zh_TW
dc.subject偏極螢光zh_TW
dc.subject偏極螢光zh_TW
dc.subject螢光電泳遷移率實驗zh_TW
dc.subject螢光電泳遷移率實驗zh_TW
dc.subjectFluorescence polarizationen
dc.subjectBiotic stressesen
dc.subjectTranscription factoren
dc.subjectAP2/ERF domainen
dc.subjectfEMSAen
dc.subjectFluorescence polarizationen
dc.subjectBiotic stressesen
dc.subjectTranscription factoren
dc.subjectAP2/ERF domainen
dc.subjectfEMSAen
dc.title阿拉伯芥乙烯反應因子ERF96與GCC-boxes序列結合機制分析zh_TW
dc.titleDNA Binding Mechanism of Arabidopsis ERF96 to GCC boxesen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭石通,林讚標
dc.subject.keyword偏極螢光,螢光電泳遷移率實驗,AP2/ERF domain,轉錄因子,生物逆境,zh_TW
dc.subject.keywordFluorescence polarization,fEMSA,AP2/ERF domain,Transcription factor,Biotic stresses,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2016-02-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved