Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51302
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭振華
dc.contributor.authorChe-Wei Hsuen
dc.contributor.author許哲維zh_TW
dc.date.accessioned2021-06-15T13:29:55Z-
dc.date.available2021-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-04
dc.identifier.citation[1] G. R. Gress, 'Lift fans as gyroscopes for controlling compact VTOL air vehicles: overview and development status of oblique active tilting,' in ANNUAL FORUM PROCEEDINGS-AMERICAN HELICOPTER SOCIETY, 2007, p. 69.
[2] C. Papachristos, K. Alexis, and A. Tzes, 'Design and experimental attitude control of an unmanned tilt-rotor aerial vehicle,' in Advanced Robotics (ICAR), 2011 15th International Conference on, 2011, pp. 465-470.
[3] 施生達, '潛艇操縱性,' 國防工業出版社, 1992.
[4] T. I. Fossen, Nonlinear modelling and control of underwater vehicles, 1991.
[5] T. I. Fossen and O.-E. Fjellstad, 'Nonlinear modelling of marine vehicles in 6 degrees of freedom,' Mathematical Modelling of Systems, vol. 1, pp. 17-27, 1995.
[6] J. H. A. M. Vervoort, 'Modeling and Control of an Unmanned Underwater Vehicle,' Master traineeship report, Department of Mechanical Engineering, Mechatronics, University of Canterbury, 2008.
[7] 孫元泉,馬運義,郭志純, '潛艇和深潛器的現代操縱理論與應用,' 國防工業出版社, 2001.
[8] 郭振華,王傑智, '自主式水下載具流體動力模式與運動控制,' 國立臺灣大學造船及海洋工程研究所碩士論文, 1996.
[9] 郭振華,梁慧瑩, '仿生型自主式水下載具使用立體視覺在水流中之動態定位控制器設計,' 國立臺灣大學工程科學及海洋工程研究所碩士論文, 2014.
[10] J. Yuh, 'Modeling and control of underwater robotic vehicles,' Systems, Man and Cybernetics, IEEE Transactions on, vol. 20, pp. 1475-1483, 1990.
[11] D. Perrault, N. Bose, S. O’Young, and C. D. Williams, 'Sensitivity of AUV added mass coefficients to variations in hull and control plane geometry,' Ocean engineering, vol. 30, pp. 645-671, 2003.
[12] A. Techet, Hydrodynamics, MIT Open Course, 2005.
[13] A. I. Korotkin, Added masses of ship structures vol. 88: Springer Science & Business Media, 2008.
[14] V. Kopman, N. Cavaliere, and M. Porfiri, 'MASUV-1: A miniature underwater vehicle with multidirectional thrust vectoring for safe animal interactions,' Mechatronics, IEEE/ASME Transactions on, vol. 17, pp. 563-571, 2012.

[15] I. Torres, J. Torres, and R. Lozano, 'A new AUV configuration with four tilting thrusters: Navigation and hover tasks,' in Electrical Engineering, Computing Science and Automatic Control (CCE), 2012 9th International Conference on, 2012, pp. 1-6.
[16] N. Amiri, A. Ramirez-Serrano, and R. Davies, 'Modelling of opposed lateral and longitudinal tilting dual-fan unmanned aerial vehicle,' in 18th IFAC World Congress, 2011, pp. 2054-2059.
[17] A. B. Chowdhury, A. Kulhare, and G. Raina, 'A generalized control method for a Tilt-rotor UAV stabilization,' in Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2012 IEEE International Conference on, 2012, pp. 309-314.
[18] F. Kendoul, I. Fantoni, and R. Lozano, 'Modeling and control of a small autonomous aircraft having two tilting rotors,' in Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on, 2005, pp. 8144-8149.
[19] J. Lee, M. Roh, J. Lee, and D. Lee, 'Clonal selection algorithms for 6-DOF PID control of autonomous underwater vehicles,' in Artificial Immune Systems, ed: Springer, 2007, pp. 182-190.
[20] A. L. Salih, M. Moghavvemi, H. A. Mohamed, and K. S. Gaeid, 'Modelling and PID controller design for a quadrotor unmanned air vehicle,' in Automation Quality and Testing Robotics (AQTR), 2010 IEEE International Conference on, 2010, pp. 1-5.
[21] J.-M. Godhavn, T. I. Fossen, and S. P. Berge, 'Non-linear and adaptive backstepping designs for tracking control of ships,' International Journal of Adaptive Control and Signal Processing, vol. 12, pp. 649-670, 1998.
[22] X. Guang-chi, Z. Da-wei, Z. Kai-wei, and G. Jing-hua, 'Multi-agent chaos particle swarm optimization algorithm of thrust allocation for dynamic positioning vessels,' in Control Conference (CCC), 2015 34th Chinese, 2015, pp. 2389-2396.
[23] H. K. Khalil and J. Grizzle, Nonlinear systems vol. 3: Prentice hall New Jersey, 1996.
[24] Y. Long and D. J. Cappelleri, 'Linear control design, allocation, and implementation for the omnicopter mav,' in Robotics and Automation (ICRA), 2013 IEEE International Conference on, 2013, pp. 289-294.
[25] W. C. Durham, 'Constrained control allocation,' Journal of Guidance, Control, and Dynamics, vol. 16, pp. 717-725, 1993.
[26] A. Marks, J. F. Whidborne, and I. Yamamoto, 'Control allocation for fault tolerant control of a VTOL octorotor,' in Control (CONTROL), 2012 UKACC International Conference on, 2012, pp. 357-362.
[27] M. W. Oppenheimer, D. B. Doman, and M. Bolender, 'Control allocation for over-actuated systems,' in Control and Automation, 2006. MED'06. 14th Mediterranean Conference on, 2006, pp. 1-6.
[28] A. J. S?rensen, S. I. Sagatun, and T. I. Fossen, 'Design of a dynamic positioning system using model-based control,' Control Engineering Practice, vol. 4, pp. 359-368, 1996.
[29] W. Liming, H. Dan, and C. Li, 'Optimized allocation control system design of multi-thrust aerostat,' in Control Conference (CCC), 2014 33rd Chinese, 2014, pp. 3725-3729.
[30] Y. Kim and B. Van Phuoc, 'A new approach for ship motion control based on experiment,' in OCEANS, 2012-Yeosu, 2012, pp. 1-4.
[31] R. Tedrake, Underactuated Robotics, MIT Open Cpurse, 2009.
[32] O. Reference, 'Camera Calibration and 3D Reconstruction,' OpenCV 2.4 calibration tool.
[33] 郭振華,陳漢穎, '自主式水下載具利用單眼視覺之序列式蒙特卡羅定位研究,' 國立臺灣大學工程科學及海洋工程研究所碩士論文, 2015.
[34] H. Li and K. Wang, 'The Design of Ship Dynamic Positioning Controller,' in Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on, 2014, pp. 58-61.
[35] D. Smallwood and L. L. Whitcomb, 'Model-based dynamic positioning of underwater robotic vehicles: theory and experiment,' Oceanic Engineering, IEEE Journal of, vol. 29, pp. 169-186, 2004.
[36] E. Lefeber, K. Y. Pettersen, and H. Nijmeijer, 'Tracking control of an underactuated ship,' IEEE transactions on control systems technology, vol. 11, pp. 52-61, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51302-
dc.description.abstract自主式水下機器人的動態定位能力一直是大多數任務在執行時的基礎,藉由穩定地定位在某個指定點,其餘的任務才得以順利執行,因此動態定位能力通常被視為機器人的指標性能之一。以往的船隻或載具大多專注在平面定位,然而本文為了實現三維空間的動態定位能力,特別研發了一具”多方向推進器”,以增加機器人的性能,使其具備在三維空間中的定位能力。這種多方向推進器具有三軸旋轉的特性,所以可以將其推力分布到半圓球表面的任一位置,相較於傳統的固定式推進器只能提供一種方向,此機構具有靈活操控的優勢。由於新型機構的幫助,此機器人能夠在搭載兩個推進器的情況下就擁有六個自由度。為了瞭解六個自由度的特性,我們首先用牛頓第二運動定理及尤拉旋轉方程式推導出機器人的動態模型,以便完整地描述其動作。當中,特別參考了垂直起降戰鬥機的模型,因為其可旋轉的噴射引擎和本文的機構具有極大相似處;而兩個推進器的相互運動則是藉由角動量守恆定律進行推導。在控制的過程中,縱移、橫移、起伏及偏航四個自由度將被控制,而滾轉及俯仰則可藉由回復力矩的設計和硬體重心的配置使其自然穩定,不需加以控制。四個自由度的控制律是根據動態模型和比例-積分-微分控制器而設計。之後,推力分配系統可以根據模型計算的結果將推力分配到適當的方向,而這個系統是根據摩爾偽逆轉換所設計,因為如何分配推力通常可視為求解數學最佳化的問題,而此方法能夠提供唯一的最佳化解。在整個控制技的設計過程裡,虛擬控制的概念也被引用其中,因為它可以用虛擬控制訊號的概念提供我們更直觀的參數表示方式;另外,感測器所提供的資訊也可當作回饋的輸入讓機器人隨時接受最新狀態,包含深度、姿態、推進器位置、電腦視覺(單眼視覺)計算的空間位置。最後,本文整合機器人的動態模型、比例-積分-微分控制器、感測器回饋、電腦視覺、推力分配系統而形成一個閉迴路實時控制的三維動態定位控制器。zh_TW
dc.description.abstractAutonomous Underwater Vehicle (AUV), or so called underwater robot, is an intelligent machine possesses computer, IMU, depth sensor, camera and other sensors built to automatically conduct many submarine tasks. In this paper, a novel design of propulsion system consisting of two “multi-directional” thrusters is developed for an AUV. Each thruster is able to provide three-axis rotation; that is, assigning thrust in any direction by rotating thruster. Therefore, it allows the AUV a very agile maneuverability and the 6 degrees of freedom with the minimum number of thrusters. Meanwhile, designing a dynamic positioning controller for the AUV to automatically locate at an assigned point in three-dimensional space is another key issue in this paper. To design the controller, firstly the dynamic model is derived via Newton’s second law and Euler’s rotation equations; the instantaneous moments resulted by relative motions of two thrusters are analyzed by the law of conservation of angular momentum. Besides, the vertical take-off and landing aircraft is also referred to formulate the thruster parts of dynamic model, for their propulsion system have similar mechanism. Secondly, four of the six degrees of freedom which are surge, sway, heave and yaw are controlled during the dynamic positioning while pitch and roll are neglected because their motions can be small under the restoring moment by a suitable arrangement of hardware. The four control laws are designed according to the dynamic model and PID control theory; besides, the three-dimensional control task is separated into depth control (heave) and planar control (surge, sway, yaw). Thirdly, to lead the AUV to the assigned position, the total thrusts generated by two thrusters need to be distributed into appropriate directions. The way to distribute thrusts can be seen as a mathematical optimization, and the method of Moore–Penrose pseudoinverse is adopted to solve the problem, for it provides the only one solution which is the best approximation among all possible solutions in least squares sense. During the process, the concept of pseudo control that is virtual control unit is also incorporated to provide an intuitive and understandable representation for control parameters. Finally, the AUV is controlled in real-time and the sensors’ information are used as feedback through detecting a set of landmarks by monocular vision.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:29:55Z (GMT). No. of bitstreams: 1
ntu-105-R02525032-1.pdf: 10599693 bytes, checksum: edd5cea5d40fd9b9553ba2a2920ca494 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
Contents VII
List of Figures XI
List of Tables XIV
List of symbols XV
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Literature Review 3
1.3. Thesis Overview 5
Chapter 2. Vehicle Introduction 7
2.1. Vehicle Appearance 8
2.2. Vehicle Structure 9
2.2.1. Configuration in the waterproof box 12
2.2.2. Mechanism of Multi-Directional Thrusters 12
2.2.3. Tail Fin 15
Chapter 3. Dynamic Model 17
3.1. Coordinate Systems 17
3.1.1. Coordinate transformation 19
3.2. Dynamic Equations 22
3.3. Rigid Body Dynamics 23
3.3.1. Dynamics of Translating Movement 23
3.3.2. Dynamics of Rotating Movement 26
3.3.3. Conclusion of Rigid Body Dynamics 29
3.4. Hydrodynamic Forces 31
3.4.1. Added Mass of the Body 31
3.4.2. Added Mass of Thrusters 34
3.4.3. Hydrodynamic Damping 38
3.5. Gravity and Buoyancy 42
3.6. Permanent Force and Moments 43
3.6.1. Thruster Force 45
3.6.2. Thruster Vectoring Moment 46
3.6.3. Fan Torque 47
3.7. Instantaneous Moments Due to Movements of Thrusters 49
3.7.1. Gyroscopic Moment from Lateral Tilting 50
3.7.2. Gyroscopic Moment from Longitudinal Tilting 53
3.7.3. Adverse Reactionary Moment from Lateral Tilting 54
3.7.4. Adverse Reactionary Moment from Longitudinal Tilting 55
3.8. Conclusion of Dynamic Model 56
Chapter 4. Controller Design 57
4.1. Sensor Information 58
4.1.1. State Information 58
4.1.2. Depth Information 60
4.1.3. Thruster information 61
4.1.4. Visual Information 63
4.2. Localization System 67
4.3. Control Law Design 69
4.3.1. Depth control 70
4.3.2. Planar Control 75
4.3.3. Theory of PID Control 79
4.4. Thrust Distribution 81
4.4.1. Constrains of Thrust Distribution 82
4.4.2. Methods of Thrust Distribution 84
4.5. Conclusion of Dynamic Positioning Control 88
Chapter 5. Experiment 89
5.1. Experimental Environment and Apparatus 89
5.2. Computer Vision Results 91
5.3. Experiments of Dynamic Positioning 94
5.3.1. Dynamic Positioning in Depth 94
5.3.2. Dynamic Positioning in X-Y Plane 97
5.3.3. Dynamic Positioning in Space 104
Chapter 6. Conclusion 111
Reference 114
Appendix 120
dc.language.isoen
dc.title自主式水下機器人使用多方向推進器在三維空間之動態定位控制器設計zh_TW
dc.titleThe Design of a Dynamic Positioning Controller Using Multi-Directional Thrusters for an Autonomous Underwater Vehicle in Three-Dimensional Spaceen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰,邱逢琛
dc.subject.keyword自主式水下載具,水下機器人,單眼電腦視覺,三維動態定位,可旋轉式推進器,比例-積分-微分控制器,摩爾偽逆轉換,推力分配,虛擬控制,zh_TW
dc.subject.keywordAUV,computer vision,monocular vision,dynamic positioning,thrust distribution,control allocation,pseudo inverse,pseudo control,PID control,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2016-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
10.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved