請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51272完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 久米朋宣(Tomonori Kume) | |
| dc.contributor.author | Song-Jun Lin | en |
| dc.contributor.author | 林松駿 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:29:07Z | - |
| dc.date.available | 2018-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-04 | |
| dc.identifier.citation | Arnell, N., Bates, B., Lang, H., Magnuson, J. J., Mulholland, P. (1996) Hydrology and freshwater ecology. Cambridge University Press, New York (USA): 325-364.
Christanty, L., Kimmins, J.P., Mailly, D. (1997) ‘Without bamboo, the land dies’: a conceptual model of the biogeochemical role of bamboo in an Indonesian agroforestry system. Forest Ecology and Management 91: 83-91. Cochard, H., Peiffer, M., Le Gall, K., Granier, A. (1997) Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L: impacts on water relations. Journal of Experimental Botan 48(308): 655-663. Delzon, S. and Loustau, D. (2005) Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agricultural and Forest Meteorology 129: 105-119. Dierick, D., Holscher, D., Schwendenmann, L. (2010) Water use characteristics of a bamboo species (Bambusa blumeana) in the Philippines. Agricultural and Forest Meteorology 150: 1568-1578. Domingo, F., Villagarcı′a, L., Boer, M.M., Alados-Arboledas, L., Puigdefa′bregas, J. (2001) Evaluating the long-term water balance of arid zone stream bed vegetation using evapotranspiration modelling and hillslope runoff measurements. Journal of Hydrology 243: 17-30. Du, S., Wang, Y. L., Kume, T., Zhang, J. G., Otsuki, K., Yamanaka, N., Liu, G. B. (2011) Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology 151: 1-10. England, J.R., Attiwill, P.M. (2006) Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees 20: 79-90. Field, C. (1983) Allocating Leaf Nitrogen for the Maximization of Carbon Gain: Leaf Age as a Control on the Allocation Program. Oecologia (Berlin) 56: 341-347 Gat, J. R., Matsui, E. (1991) Atmosfheric water balance in the Amazon basin: An isotopic evapotranspiration model. Journal of geophysical research 96(D7) :13179-13188. Granier, A. (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. for. 42(2):81-88. French. Granier, A. (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3: 309-319. James, S.A., Clearwater, M.J., Meinzer, F.C., Goldstein, G. (2002) Variable length heat dissipation sensors for the measurements of sap flow in trees with deep sapwood. Tree Physiol. 22: 277-283. Jeffree, C.E., Johnson, R.P.C., Jarvis, P.G. (1971) Epicuticular wax in the stomatal antechamber of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98:1-10. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., Zhang, K. (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467: 951-954. Kobayashi, T., Tada, M. (2010) How do Moso bamboo forests change carbon sequestration and storage, and decomposition of soil organic matter in community forests? Shinrin Kagaku 53: 6-10 (in Japanese). Komatsu, H., Onozawa, Y., Kume, T., Tsuruta, K., Kumagai, T., Shinohara, Y., Otsuki, K. (2010) Stand-scale transpiration estimates in a Moso bamboo forest: (II). Comparison with coniferous forests. Forest Ecol. Manage. 260: 1295-1302. Kumar, B.M., Divakara, B.N. (2001) Proximity, clump size and root distribution pattern in bamboo: a case study of Bambusa arundinacea (Retz) Willd, Poaceae, in the Ultisols of Kerala, India. J. Bamboo Rattan 1: 43-58. Kumagai, T., Aoki, S., Shimizu, T., Otsuki, K. (2007) Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed. Tree Physiol. 27: 161-168. Kumagai, T., Tateishi, M., Shimizu, T., Otsuki, K. (2008) Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agric. For. Meteorol. 148: 1444-1455. Kume, T., Tsuruta, K., Komatsu, H., Kumagai, T., Higashi, N., Shinohara, Y., Otsuki, K. (2010a) Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiol. 30: 129-138. Kume, T., Onozawa, Y., Komatsu, H., Tsuruta, K., Shinohara, Y., Otsuki, K. (2010b) Stand-scale transpiration estimates in a Moso bamboo forest: (I). Applicability of the sap flux measurements. Forest Ecol. Manage. 260: 1287-1294. Langenberger, G. (2006) Habitat distribution of dipterocarp species in the LeyteCordillera: an indicator for species-site suitability in local reforestation programs. Ann. For. Sci. 63: 149-156. Laplace, S. (2013) Study on transpiration in a Taiwanese Moso bamboo forest using sap flow measurement. School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis Lean, J., Warrilow, D. A. (1989) Simulation of the regional climatic impact of Amazon deforestation. Nature 342: 411-413. Li, R., Werger, M. J. A., During, H. J., Zhong, Z. C. (1998) Biennial variation in production of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan, China. Plant Ecology 135: 103-112 Li, R., Werger, M. J. A., During, H. J., Zhong, Z. C. (1998) Carbon and nutrient dynamics in relation to growth rhythm in the giant bamboo Phyllostachys pubescens. Plant and Soil 201: 113-123 Li, R., Werger, M. J. A., de Kroon, H., During, H. J., Zhong, Z. C. (2000) Interactions Between Shoot Age Structure, Nutrient Availability and Physiological Integration in the Giant Bamboo Phyllostachys pubescens. Plant biol. 2: 437-446. Liese, W. (1994) Biological aspects of bamboo and rattan for quality improvement by polymer impregnation. Folia For. Pol. Seria B. 25: 43-56. Liese, W., Weiner, G. (1996) Ageing of bamboo culms. A review. Wood Science and Technology 30:77-89. Lin, W. C., Kang, Z. Y., Hwang, S. G., Kiang, T. (1962) Investigation on resources of important bamboos in Taiwan. Co-operative bulletin of Taiwan forestry research institute, 4. Lin, M. Y. (2014) Soil carbon cycling of a moso bamboo forest in Xitou, central Taiwan. School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis. Lobovikov, M., Ball, L., Guardia, M., Russo, L. (2005-2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment. Food and Agriculture Organization of the United Nations. Lu, P., Urban, L., Zhao, P. (2004) Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice. Acta Botanica Sinica 46 (6): 631-646. Miyashita, K., Tanakamaru, S., Maitani, T., Kimura, K. (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany 53:205-214. Molion, L. C. B. (1976) Climatonomic Study of the Energy and Moisture Fluxes of the Amazonas Basin with Consideration of Deforestation Effects. University of Wisconsin, U.S.A. PhD Thesis. Monteith, J.L. (1965) Evaporation and environment. Symp. Soc. Exp. Biol. 19: 205-234. Nobel, P. S. (1991) Physiochemical and environmental plant physiology. 4th ed. San Diego, 635: Academic Press Pataki, D.E., Oren, R. (2003) Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv. Water Res. 26: 1267-1278. PAGASA, (2007) Philippine Atmospheric, Geophysical and Astronomical Services Administration, Philippines. http://www.pagasa.dost.gov.ph (last visited: 12.05.2014). Philip J.R. (1966) Plant water relations: some physical aspects. Annual Review of Plant Physiology 17, 245-268. Priestley, C.H.B. and R.J. Taylor, 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large Scale Parameters. Mon. Weath. Rev. 100:81-92. Phillips, N., Oren, R. (1998) A comparison of daily representations of canopy conductance based on two conditional time averaging methods and the dependence of daily conductance on environmental factors. Ann. Sci. For. 55: 217-235. Running, S. W., Coughlan, J. C. (1988) A general model of forest ecosystem processes for regional applications: I. Hydrologic balance, canopy gas exchanged and primary production processes. Ecological Modelling 42: 125-154 Roberts, S., Vertessy, R., Grayson, R. (2001) Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management 143:153-161 Uchimura, E. (1994) Invitation to Bamboos: Wonder of Biology. Kenseisha, Tokyo (in Japanese) Ueda, K. (1979) Bamboos and Japanese. NHK Shuppan, Tokyo (in Japanese). van den Honert T.H. (1948). Water transport in plants as a catenary process. Discussions Faraday Soc. 3: 146-153. van den Honert T.H. (1948). Water transport in plants as a catenary process. Discussions Faraday Soc. 3, 146-153. Vertessy, R. A., Benyon, R. G., O’sullivan, S. K., Gribben, P. R. (1995) Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology 15: 559¬-567 Vertessy, R. A., O’sullivan ,S. K., Watson, F. G. R. (2001) Factors determining relations between stand age and catchment water balance in mountain ash forests. Forest Ecology and Management 143: 13-26 Villa Nova, N.A., Pereira, A.R., Pedro Jr., M.J. (1975) Energy balance over rice grown under upland conditions. Bragantia 34: 171-179 (in Portuguese with English summary). Vos, J., Oyarzun, P.J. (1987) Photosynthesis and stomatai conductance of potato leaves-effects of leaf age, irradiance, and leaf water potential. Photosynthesis Research 11: 253 264. Wilson, K.B., Hason, P.J., Mulholland, P.J., Baldocchi, D.D., Wullschleger, S.D. (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 106: 153-168. Wullschleger, S.D., Hanson, P.J., Todd, D.E. (2001) Transpiration from amulti-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecol. Manage. 143: 205-213. Yen, T. M. and J. S. Lee (2011) Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management 261:995-1002. 白尚斌(Bai Shang-Bin), 周國模(Zhou Guo-Mo), 王懿祥(Wang Yi-Xiang), 余樹全(Yu Shu-Quan), 李艷華(Li Yan-Hua), 方飛燕(Fang Fei-Yan). (2012). 天目山國家级自然保護區毛竹擴散過程的林分结構變化研究 Stand Structure Change of Phyllostachys pubescens Forest Expansion in Tianmushan National Nature Reserve. 西部林業科学 (Journal of West China Forestry Science), 41(1), 77-82. 陳財輝(Chen Tsai-Huei), 劉瓊霦(Liu Chiung-Pin), 鍾欣芸(Chung Hsin-Yun).(2011). 南投縣鳳凰山孟宗竹產筍林分之生長與生物量 Growth and Biomass of Moso Bamboo in Fenghuang Mountain, Nantou County. 中華林學季刊, 44(1), 19-28. 陳財輝(Chen Tsai-Huei), 邱志郁(Chiu Chih-Yu), 謝忠穎(Xie Zhong-Ying), 王仁(Wang Jen). (2014). 不同海拔高度孟宗竹林分之生長—以南投縣大鞍地區為例 Growth Characteristics of Moso Bamboo (Phyllostachys pubescens) Plantations at Various Altitude-For Instance in Daan Area, Nantou County. 中華林學季刊, 47(2), 181-192. 邱祈榮(Chiou Chyi-Rong), 陳財輝(Chen Tsai-Huei), 林裕仁(Lin Yu-Jen), 楊鄢 如(Yang Yen-Ju), 林欣德(Lin Shin-Der). (2009). 台灣北部地區竹林資源 分布及變遷之研究 Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. 中華林學季刊, 42(1), 89-105. 戴廣耀(Dai, Guang- Yao), 楊寶霖(Yang, Bao-Lin), 沈榮江(Shen Rong-Jiang) (1973)台灣竹林資源. 農復會、林務局、航測隊、屏農專合作計畫, P.82. 呂錦明(Lü, Chin-Ming) (2001) 竹林之培育及經營管理. 行政院農委會林業試驗所, 林業叢刊,135, P. 206. 杜大治(Tu Ta-Chih), 王亞男(Wang Ya-Nan), 蕭英倫(Shiau Eng-Lun). (2003). 孟宗竹在不同冠層二氧化碳固定效益之研究Efficiency of carbon dioxide fixation by Phyllostachys pubescens.臺灣大學生物資源暨農學院實驗林研究 報告.17(3): 187-194. 王仁(Wang Jen), 陳財輝(Chen Tsai-Huei), 張華洲(Chang Hua-Chou), 鍾欣芸(Chung Hsin-Yun), 李宗宜(Li Tsung-I), 劉瓊霦(Liu Chiung-Pin). (2009). 蕙蓀林場和石棹孟宗竹林分結構及地上部生物量和碳儲存量 The Structures, Aboveground Biomass, Carbon Storage of Phyllostachys pubescens Stand in Huisun Experimental Forest Station and Shi-Zhou. 林業研究季刊, 31(4), 17-26. 王仁(Wang Jen), 陳財輝(Chen Tsai-Huei), 陳信佑(Cheng Hsin-You), 鍾欣芸(Chung Hsin-Yun), 劉恩妤(Liu En-U), 李宗宜(Li Tsung-I), 劉瓊霦(Liu Chiung-Pin). (2010). 孟宗竹林採伐後兩年間地上部生物量與碳吸存量動態 Estimating Aboveground Biomass and Carbon Sequestration of Moso Bamboo Grown Under Selection Cutting after Two Years. 林業研究季刊, 32(3), 35-44. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51272 | - |
| dc.description.abstract | 近年來,竹林有迅速擴張並且取代原有林分的狀況,此情形可能造成當地植被蒸發散的改變進而對當地水文循環產生影響,但是竹林的蒸散特性到目前還沒被明確的瞭解。跟木本植物人工林相比,竹林具有年齡結構以及胸高直徑分布每年改變的特殊性,但沒有任何研究討論竹桿的老化如何影響竹子的蒸散。為了瞭解年齡結構對於林分規模蒸散量的影響,竹桿年齡對於竹子蒸散的影響為重要的研究環節之一。為了明確的瞭解竹桿年齡對於竹林蒸散量的影響,本研究在台灣大學溪頭實驗林進行孟宗竹林樹液流測量,總共選定34根竹子作為樹液流測量樣本,並且將竹子分為五個齡級 (2014年生、2013年生、2012年生、2012年以前生較年輕、2012年以前生較老)。本研究目的有以下四點:(1)呈現孟宗竹林四年間的林分結構以及胸高直徑分布的變化,(2)探討竹桿年齡及樹液流的關係,(3)推估每個齡級竹子的蒸散量以及對於林分總蒸散量的貢獻,(4)探討林分結構對於林分蒸散推估的影響。
研究結果顯示孟宗竹林連續四年的林分結構以及胸高直徑分布的變化,同時結果也顯示,在較老齡級的竹桿,樹液流明顯較其他年輕齡級的竹桿來的低,此外,在最年輕的齡級,竹子樹液流出現高峰值的時間較其他齡級來的早。在蒸散量推估的部分,林分年蒸散量推估大約300 (mm/year),各年齡組蒸散量占總林分蒸散量的比例分別為,「2014年生」17.9%、「2013年生」24.3%、「2012年生」11.4%、「2012年以前生較年輕」38.1%以及「2012年以前生較老」8.4%。由於最老齡級竹桿的最慢的樹液流速,最老齡級的竹子也呈現了最低的林分蒸散貢獻量即使該組竹子仍在樣區內佔有可觀的數量。此外,我們也嘗試在林分蒸散量的推估中比較考慮年齡結構與否的差異,發現到如果我們不考慮年齡結構,林分蒸散量的推估質可能高估或低估。總體而言,本研究顯示,竹桿的老化會明顯影響竹子的樹液流流速,以及在基於樹液流測量的研究中,考慮竹林年齡結構是了解林分規模蒸散量不可或缺的一環。 | zh_TW |
| dc.description.abstract | Bamboo forests have been expanding by replacing surrounding ecosystem recently, and the expansions of bamboo forests could alter local water cycling due to significantly large transpiration in bamboo forests. But the characteristics of bamboo forests are still not clearly understood. Although bamboo forests have different stand structure characteristics such as year-to-year variations in culm age structure from those of woody plantation, no studies have examined how the culm aging can affect bamboo transpiration. For better understanding stand-scale transpiration in bamboo forests, the research of the influence of culm age on transpiration is needed. To clarify the culm age effect on transpiration in bamboo forests, this study conducted sap flux measurements in a Moso bamboo forest in National Taiwan University (NTU) forest. Sap flux measurements were performed in total 34 individuals, which were separated into five age classes (ie, born 2014, born 2013, born 2012, before 2012 newer, and before 2012 older). This study aimed (1) to show the variations of the age structure and DBH distribution of the Moso bamboo forest for four years, (2) to quantify relationship between culm age and individual sap flux, (3) to estimate the stand transpiration and contribution of each age class transpiration to total stand transpiration and (4) to find the impact of age structure on the stand-scale transpiration estimates.
In this study, the distribution of DBH and age structure showed considerable year-to-year variations in the four years. As well, the results showed that culm age effected on the sap flux, that is, sap flux in older culms were significantly lower than that of younger age culms and the new culms showed earlier peak time than older culms. In the part of transpiration estimate, the annual transpiration of the study site is around 300 (mm/year) during July 2014 to June 2015 , and the contribution of each age class to total stand transpiration was 17.9%, 24.3%, 11.4%, 38.1%, and 8.4% for born 2014, born 2013, born 2012, before 2012 newer, and before 2012 older, respectively. Because of the lowest sap flux in the before 2012 older, the oldest group’s bamboos showed the lowest contribution in the study site despise the considerable occupation of culm number in the oldest group. Moreover, this study tested stand transpiration estimates with and without considering culm age structure. Consequently, the transpiration estimates in bamboo forests maybe under- or over-estimated if we do not consider the age structure. Overall, this study concluded that culm aging significantly affected bamboo transpiration and that consideration of culm age structure is needed to understand stand transpiration based on sap flux measurements. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:29:07Z (GMT). No. of bitstreams: 1 ntu-105-R02625023-1.pdf: 2706772 bytes, checksum: 9ac3a73560695174f27bf3367e7e1934 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書……………………………………………………………………….i
誌謝……………………………………………………………………………………ii 中文摘要…………………………………………………………………………….iv 英文摘要………………………………………………………………...……………v Content Chapter 1: Introduction………………………………………………………………..1 Importantce of transpiration………………………………………………………...1 Significance of bamboos……………………………………………………….…...1 Transpiration in bamboo forest……………………………………………………4 Effect of stand structure and age on stand transpiration……………………………5 Purpose……………………………………………………………………………7 Chapter 2: Material and Method………………………………………………………8 2.1 Study site…………………………………………………………………..……8 2.2 Measurements………………………………………………………………….8 2.2.1 DBH and age structure determination…………………………………….8 2.2.2 Sap flux measurement……………………………………………………9 2.2.3 Meteorological measurement……………………………………………11 2.3Data analysis……………………………………………………………………11 2.3.1 Peak time frequency………………………………………………………11 2.3.2 Stand-scale transpiration E………………………………………………..12 2.3.3 Individual culm sectional area estimate…………………………………..13 2.3.4 Consider impact of culm age structure on transpiration estimates………..13 2.3.5 Random analysis for examining the result of different scenario estimate..17 Chapter 3: Result and Discussion…………………………………………………….18 3.1 The distribution of DBH and culms age in study site…………………………18 3.2 Meteorological conditions……………………………………………………..19 3.3 Diurnal variation of sap flux in different culm age……………………………20 3.4 The frequency of sap flux peak time…………………………………………..21 3.5 Average daytime mean sap flux………………………………………………..22 3.6 Transpiration in different culm age……………………………………………24 3.7 The age structure effect on stand-scale transpiration estimates……………….24 Chapter 4: Conclusion………………………………………………………………..26 Chapter 5: Figures and tables………………………………………………………...27 Chapter 6: Appendix…………………………………………………………………48 Reference…………………………………………………………………………….50 圖目錄 Figure List Fig. 1 Diagram of an installed Granier’s thermal-dissipation probes (TDP). ………27 Fig. 2 The location of bamboos in the study area, Xitou, Taiwan, 2014. …………28 Fig. 3 DBH distribution of moso bamboo forest at Xitou during 2011 to 2014. ........29 Fig. 4 The distribution of culm age in 2013 and 2014. ……………………………...30 Fig. 5 The proportion of culm numbers in each age class for the 34 samples and the all culms in the plot, 2014. ………………………………………………………31 Fig. 6 The proportion of total section area of culms in each age class for the 34 samples and the all culms in the plot, 2014. ……………………………….………32 Fig. 7 Meteorological conditions in Xitou from June 2014 to June 2015. …………33 Fig. 8 The sap flux diurnal variation of each culms in different age groups (2014/9/1~2014/9/8). ………………………………………………………………...34 Fig. 9 Relationship between sap flux and vapor pressure deficit. …………………...35 Fig. 10 Relationship between sap flux and solar radiation. ………………………....36 Fig. 11 Frequency of peak time determined from diurnal variations in sap flux for each age groups (July 2014 ~ June 2015). ……………………………………...37 Fig. 12 Peak time frequency in each month (July 2014 ~ June 2015). …………..38 Fig. 13 The daytime mean sap flux averaged over during the period of June 2014 to February 2015. ………………………………………………………………………39 Fig. 14 The daytime sap flux average in each month (July 2014 ~ June 2015). 40 Fig. 15 The monthly transpiration in the study site (July 2014 to June 2015). ……...41 Fig. 16 The proportion (%) of transpiration from each age class in each month (July 2014 to June 2015). ………………………………………………………………….42 Fig. 17 The different scenario of the stand-scale transpiration estimate. ……………43 Fig. 18 The box plot of the random analysis for the different estimate scenario. …...44 表目錄 Table List Table 1. Characteristics of the 34 bamboo culms used for sap flow measurements. ..45 Table 2. The basic characteristics of age groups. …………………………………...46 Table 3. The data of random analysis for the comparison of “Original method” and “Considering age structure” scenario. ………………………….……………………47 附錄 Appendix List Appendix figure 1. The daily sap flux of the 34 samples and the daily vapor pressure deficit in the study period (July 2014~June 2015). …………………………………48 Appendix table 1. The leaf area index of the study site from June 2014 to November 2015. …………………………………………………………………………………49 | |
| dc.language.iso | en | |
| dc.subject | 孟宗竹 | zh_TW |
| dc.subject | 樹液流 | zh_TW |
| dc.subject | 蒸散 | zh_TW |
| dc.subject | 竹桿年齡 | zh_TW |
| dc.subject | 年齡結構 | zh_TW |
| dc.subject | 胸高直徑分布 | zh_TW |
| dc.subject | 樹液流 | zh_TW |
| dc.subject | 蒸散 | zh_TW |
| dc.subject | 竹桿年齡 | zh_TW |
| dc.subject | 孟宗竹 | zh_TW |
| dc.subject | 年齡結構 | zh_TW |
| dc.subject | 胸高直徑分布 | zh_TW |
| dc.subject | age structure | en |
| dc.subject | DBH distribution | en |
| dc.subject | transpiration | en |
| dc.subject | culm age | en |
| dc.subject | Moso bamboo | en |
| dc.subject | sap flux | en |
| dc.subject | DBH distribution | en |
| dc.subject | sap flux | en |
| dc.subject | transpiration | en |
| dc.subject | culm age | en |
| dc.subject | Moso bamboo | en |
| dc.subject | age structure | en |
| dc.title | 溪頭孟宗竹林之竹桿年齡對蒸散量的影響 | zh_TW |
| dc.title | Effect of culm age on transpiration in a Moso bamboo forest, Xitou, Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁偉立,劉瓊霦 | |
| dc.subject.keyword | 樹液流,蒸散,竹桿年齡,孟宗竹,年齡結構,胸高直徑分布, | zh_TW |
| dc.subject.keyword | sap flux,transpiration,culm age,Moso bamboo,age structure,DBH distribution, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
