請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭超隆 | |
| dc.contributor.author | Ming-Ying Yu | en |
| dc.contributor.author | 余明穎 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:28:49Z | - |
| dc.date.available | 2016-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-05 | |
| dc.identifier.citation | Adcock SA, McCammon JA. 2006. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589-1615.
Batey RT, Rambo RP, Doudna JA. 1999. Tertiary Motifs in RNA Structure and Folding. Angew Chem Int Ed Engl. 38:2326-2343. Branch AD, Benenfeld BJ, Robertson HD. 1985. Ultraviolet light-induced crosslinking reveals a unique region of local tertiary structure in potato spindle tuber viroid and HeLa 5S RNA. Proc Natl Acad Sci U S A 82:6590-6594. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA. 1996. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678-1685. Chan RT, Robart AR, Rajashankar KR, Pyle AM, Toor N. 2012. Crystal structure of a group II intron in the pre-catalytic state. Nat Struct Mol Biol 19:555-557. Correll CC, Wool IG, Munishkin A. 1999. The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. J Mol Biol. 292:275-287. Dallas A, Moore PB. 1997. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure 5:1639-1653. Fox GE, Ashinikumar KN. 2004. The Evolutionary History of the Translation Machinery. In: de Pouplana LR, editor. The Genetic Code and the Origin of Life: Kluwer Academic / Plenum Publishers, New York p. 92-105. Grundy FJ, Henkin TM. 2006. From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit Rev Biochem Mol Biol. 41:329-338. Haller A, Souliere MF, Micura R. 2011. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44:1339-1348. Hsiao C, Chou IC, Okafor CD, Bowman JC, O'Neill EB, Athavale SS, Petrov AS, Hud NV, Wartell RM, Harvey SC, et al. 2013. RNA with iron(II) as a cofactor catalyses electron transfer. Nat Chem 5:525-528. Hsiao C, Mohan S, Hershkovitz E, Tannenbaum A, Williams LD. (66 co-authors). 2006. Single nucleotide RNA choreography. Nucleic Acids Res 34:1481-1491. Hsiao C, Mohan S, Kalahar BK, Williams LD. (74 co-authors). 2009. Peeling the onion: ribosomes are ancient molecular fossils. Mol Biol Evol 26:2415-2425. Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dynamics. J Mol Graph 14:33-38, 27-38. Johnson MS, Sutcliffe MJ, Blundell TL. 1990. Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. J Mol Evol 30:43-59. Joyce GF. 2004. Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791-836. Klein DJ, Schmeing TM, Moore PB, Steitz TA. (21376068 co-authors). 2001. The kink-turn: a new RNA secondary structure motif. EMBO J 20:4214-4221. Leontis NB, Stombaugh J, Westhof E. 2002. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497-3531. Leontis NB, Westhof E. (99003346 co-authors). 1998. A common motif organizes the structure of multi-helix loops in 16S and 23S ribosomal RNAs. J Mol Biol. 283:571-583. Moore PB. 1999. Structural motifs in RNA. Annual Review of Biochemistry 68:287-300. Pardi A, Jucker FM, Legault P, Nikonowicz EP. 1993. Solution Structures of RNA - RNA Folding Motifs and Ribozymes. Biophysical Journal 64:A1-A1. Pauling L, Zuckerkandl E. 1963. Chemical Paleogenetics Molecular Restoration Studies of Extinct Forms of Life. Acta Chemica Scandinavica 17:9-16. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. 2005. Scalable molecular dynamics with NAMD. J Comput Chem 26:1781-1802. Poot RA, van den Worm SH, Pleij CW, van Duin J. 1998. Base complementarity in helix 2 of the central pseudoknot in 16S rRNA is essential for ribosome functioning. Nucleic Acids Res 26:549-553. R. A, C. C. 1992. Gaussian Smoothing by Optimal Iterated Uniform Filters. Computers and Artificial Intelligence 11:11. Russell R, Millett IS, Tate MW, Kwok LW, Nakatani B, Gruner SM, Mochrie SG, Pande V, Doniach S, Herschlag D, et al. 2002. Rapid compaction during RNA folding. Proc. Natl. Acad. Sci. U. S. A. 99:4266-4271. Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935-1942. Shi X, Khade PK, Sanbonmatsu KY, Joseph S. 2012. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J Mol Biol 419:125-138. Staple DW, Butcher SE. 2005. Pseudoknots: RNA structures with diverse functions. PLoS Biol 3:e213. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30:2725-2729. Varani G, Cheong C, Tinoco I, Jr. 1991. Structure of an unusually stable RNA hairpin. Biochemistry 30:3280-3289. Vargason JM, Henderson K, Ho PS. 2001. A crystallographic map of the transition from B-DNA to A-DNA. Proceedings of the National Academy of Sciences of the United States of America 98:7265-7270. Vila A, Viril-Farley J, Tapprich WE. 1994. Pseudoknot in the central domain of small subunit ribosomal RNA is essential for translation. Proc Natl Acad Sci U S A 91:11148-11152. Wang QS, Unrau PJ. 2005. Ribozyme motif structure mapped using random recombination and selection. RNA 11:404-411. Wimberly B, Varani G, Tinoco I, Jr. 1993. The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry 32:1078-1087. Woodson SA. (Cur_Op_Str_Bio_2012 co-authors). 2010. Compact intermediates in RNA folding. Annu Rev Biophys 39:61-77. Xu X, Yu T, Chen SJ. 2016. Understanding the kinetic mechanism of RNA single base pair formation. Proc Natl Acad Sci U S A 113:116-121. Zhang Q, Stelzer AC, Fisher CK, Al-Hashimi HM. 2007. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450:1263-1267. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51261 | - |
| dc.description.abstract | RNA是令人驚奇的生物分子,在生物裡扮演的角色與其立體構造息息相關,愈深究RNA的立體構造,愈能揭開RNA在生物內的催化功能及機轉,他的骨架具有彈性而易彎折,因此RNA的立體結構具有局部多變異的特性。重複出現的RNA構造稱為RNA模組,已知的RNA模組有Tetraloop、Kink-turn、E-loop等,這些構造被認為與分子立體結構的穩定及生化反應催化活性息息相關。我的研究主題為RNA E-loop模組,它是由雙股RNA組成,其中一股的結構與A-form相似,另一股的骨架則扭曲成S型。在過去文獻中,E-loop模組被發現於23S rRNA的內層、RNA三股交叉點及第II型內含子中,並指出此結構可以和延伸因子-G(EF-G)結合。我利用細菌及古生菌的核糖體三維結構,進行迴圈式地生物資訊學構造探勘,分析並分類我所發現的E-loop motif。依據我所定義的參數含括對構型的新定義,我將E-loop模組分類為成熟型、過渡型及原始型。我利用統計E-loop模組的演化共變性,觀察它在三維空間裡局部構型的多變性,並進行分子動力的引導計算模擬。我的研究成果總結如下:(1) 我利用生物資訊學分析方法進行23S rRNAs的構造探勘,有超過60% 的E-loop模組是全新發現,在過去文獻中未被報導。(2) 我所發現的E-loop模組具有構型的多樣性。(3) 我利用結晶構造解析及分子動力的引導計算模擬,推演出E-loop模組在原子層級解析度下的折疊機制。(4) 我建立了E-loop模組的演化模型,由原始型的結構初始化,歷經過渡型,最後演化為成熟型的E-loop模組。 (5) 透過核醣體的構造探勘,我推論了E-loop模組是在選擇性壓力的驅使下,與核醣體共同演化。所以,RNA模組的熟成也是穩定核糖體整體結構和扮演生化反應的重要基礎元素。 | zh_TW |
| dc.description.abstract | RNA is amazing. Its pliable backbone deviates the RNA local structure plays important roles in many biological functions and enzymatic catalysis. The repetitive RNA structures, called RNA motifs such as Tetraloop, Kink-turn, E-loop, etc., are considered to be essential intrinsic elements that stabilize the RNA conformations and confer the RNA catalytic functions. Among many unique RNA motifs, the RNA E-loop motif is in a helix form with one stand in an A-form conformation, and the other in an S-shape. The RNA E-loop motif is observed in the core of the 23S rRNA, in the three-way junctions of the 23S rRNA, in the catalytic RNA of group II introns, and is critical for anchoring the elongation factor G (EF-G) of the ribosome. Here we iteratively structural mine the E-loop motif within the bacterial and archaeal ribosomes. We focus on analyzing and classifying the three dimensional structures of the RNA E-loop motif. We statistically compute the phylogenic covariations, conformationally inspect the RNA local structural deviations, and systematically analyze the intra-molecular interactions of the E-loop motifs. We also perform the directed MD (molecular dynamics) simulations on the folding of the E-loop motif. Here we show that (i) more than 60% of the E-loops are uncovered, (ii) RNA E-loop motif accommodates the local structural deviations, (iii) we postulate the reaction coordinates of the E-loop motif folding at atomic resolution, (iv) the evolution of the RNA E-loop motif involves with three periods, which we define, are mature, intermediate, and primitive period, and (v) in each period of the E-loop motif is coped with the evolution of the large subunit of the ribosomes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:28:49Z (GMT). No. of bitstreams: 1 ntu-105-R02b46003-1.pdf: 14413994 bytes, checksum: 823aa7a62c621c1ea311964f1e3a1374 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝誌 ii 中文摘要 iii Abstract i Contents i Figure contents iii Table Contents iv Chapter 1: Introduction 1 Chapter 2: Material and Method 5 2.1 Bioinformatically Search the RNA E-Loop Motif. 5 2.2 Validation and Verification Scheme of RNA E-Loop Motif 6 2.3 Molecular Dynamic (MD) Simulations on Folding of the RNA E-Loop Motif. 9 2.4 Trajectory Analysis 10 2.5 Structural Alignment for RNA E-Loop Motif 10 Chapter 3: Result 12 3.1 The Bioinformation of the RNA E-loop Motif 12 3.1.1 The validation and verification of RNA E-loop motif. 12 3.1.2 The newly discovered E-loop motifs 17 3.1.3 E-loop motif Classification 18 3.2 Sequence and Structure Conservation of RNA E-Loop Motif 20 3.2.1 Sequence conservation in RNA E-loop motif. 20 3.2.2 Structure conservation in mature E-loops 20 3.3 Folding Regime of RNA E-Loop Motif 23 3.3.1 Trajectory analysis of the directed MD simulated RNA E-loop motif 23 3.3.2 The postulation of folding pathway of RNA E-loop motif at atomic resolution 24 3.4 The Evolution of RNA E-Loop Motif 26 Chapter 4: Discussion 31 4.1 The Reaction Coordinate of RNA E-Loop Motif 31 4.2 The Evolutionary Scheme of RNA E-Loop Motif 33 4.3 RNA E-Loop Motif Evolution and Ribosome Evolution 34 4.4 Summary 37 Reference 38 Appendix 42 Appendix 1. MD simulation configuration file of energy minimization and fixed-atom program. 42 Appendix 2. MD simulation configuration file of freeing the RNAs. 45 Appendix 3. MD simulation configuration file of temperature gradient. 48 Appendix 4 The RNA E-loop motif 52 | |
| dc.language.iso | en | |
| dc.subject | E-loop模組 | zh_TW |
| dc.subject | RNA二級結構 | zh_TW |
| dc.subject | RNA摺疊 | zh_TW |
| dc.subject | RNA結構演化 | zh_TW |
| dc.subject | 核醣體演化 | zh_TW |
| dc.subject | 生物資訊學 | zh_TW |
| dc.subject | RNA二級結構 | zh_TW |
| dc.subject | RNA摺疊 | zh_TW |
| dc.subject | RNA結構演化 | zh_TW |
| dc.subject | E-loop模組 | zh_TW |
| dc.subject | 核醣體演化 | zh_TW |
| dc.subject | 生物資訊學 | zh_TW |
| dc.subject | ribosome evolution | en |
| dc.subject | bioinformatics | en |
| dc.subject | RNA reaction coordinate | en |
| dc.subject | RNA motif evolution | en |
| dc.subject | E-loop motif | en |
| dc.subject | RNA secondary structure | en |
| dc.subject | bioinformatics | en |
| dc.subject | RNA secondary structure | en |
| dc.subject | RNA reaction coordinate | en |
| dc.subject | RNA motif evolution | en |
| dc.subject | E-loop motif | en |
| dc.subject | ribosome evolution | en |
| dc.title | 在原子層級解析 RNA E-loop Motif的摺疊與演化 | zh_TW |
| dc.title | The RNA E-loop Motif: Folding and Evolution at Atomic Resolution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張震東,冀宏源 | |
| dc.subject.keyword | RNA二級結構,RNA摺疊,RNA結構演化,E-loop模組,核醣體演化,生物資訊學, | zh_TW |
| dc.subject.keyword | RNA secondary structure,RNA reaction coordinate,RNA motif evolution,E-loop motif,ribosome evolution,bioinformatics, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 14.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
