Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51247
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭智馨
dc.contributor.authorChen-Chang Chenen
dc.contributor.author陳震菖zh_TW
dc.date.accessioned2021-06-15T13:28:28Z-
dc.date.available2016-06-01
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-08
dc.identifier.citation中央氣象局,1995 - 2013。氣候資料年報。第一部分–地面資料。臺北。臺灣。
余東峰,1995。面天山火山岩來源土壤之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。臺北。臺灣。
林朝宗,1992。林口。五萬分之一臺灣地質圖及說明書。經濟部中央地質調查所。臺北。臺灣。29頁。
高政毅,2003。臺灣北部灰燼土與極育土之過渡土壤之化育作用與指標因子。國立臺灣大學農業化學研究所碩士論文。臺北。臺灣。
黃政恆,1990。七星山與紗帽山火山岩來源土壤之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。臺北。臺灣。
黃鑑水,2005。臺北。五萬分之一臺灣地質圖及說明書。經濟部中央地質調查所。臺北。臺灣。40頁。
劉禎祺,2004。臺灣中部亞高山森林地區具黏粒聚積之淋澱化土壤之特性與化育作用。國立臺灣大學農業化學研究所博士論文。臺北。臺灣。
吉田稔,1968。腐植質酸性土壌の置換性アルミニウムの抽出に対する銅イオンの効果。日本土壌肥料學雜誌 39,510-513。
Amedee, G., Peech, M., 1976. The significance of KCl-extractable Al (III) as an index to lime requirement of soils of the humid tropics. Soil Science 121, 227-233.
Aomine, S., Wada, K., 1962. Differential weathering of volcanic ash and pumice, resulting in formation of hydrated halloysite. American Mineralogist 47, 1024-1048.
Aran, D., Gury, M., Jeanroy, E., 2001. Organo-metallic complexes in an Andosol: a comparative study with a Cambisol and Podzol. Geoderma 99, 65-79.
Arshad, M.A., Schnitzer, M., 1989. Chemical characteristics of humic acids from 5 soils in kenya. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 152, 11-16.
Asio, V., Chen, Z.S., Tsou, T.C., 2000. Comparison of clay dispersion pretreatment and estimation of clay content in volcanic soils of Taiwan and the Philippines. Food Science and Agricultural Chemistry 2, 20-27.
Auxtero, E., Madeira, M., Monteiro, F., Horta, M., 2013. Evaluation of different soil tests for phosphate extractability in major soils from Angola. Communications in Soil Science and Plant Analysis 44, 1412-1434.
Bortiatynski, J.M., Hatcher, P.G., Knicker, H., 1996. NMR techniques (C, N, and H) in studies of humic substances. In: Gaffney, J.S., Marley, N.A., Clark, S.B. (Eds.), Humic and Fulvic Acids: Isolation, Structure, and Environmental Role, American Chemical Society, Washington, DC, USA, pp. 57-77.
Broquen, P., Lobartini, J.C., Candan, F., Falbo, G., 2005. Allophane, aluminum, and organic matter accumulation across a bioclimatic sequence of volcanic ash soils of Argentina. Geoderma 129, 167-177.
Caner, L., Petit, S., Joussein, E., Fritsch, E., Herbillon, A.J., 2011. Accumulation of organo-metallic complexes in laterites and the formation of Aluandic Andosols in the Nilgiri Hills (southern India): similarities and differences with Umbric Podzols. European Journal of Soil Science 62, 754-764.
Carter, M.R., 1993. Soil sampling and methods of analysis. CRC Press, Florida, USA.
Chen, C.P., Cheng, C.H., Huang, Y.H., Chen, C.T., Lai, C.M., Menyailo, O.V., Fan, L. J., Yang, Y.W., 2014. Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma 232, 581-588.
Chen, Z., Pawluk, S., 1995. Structural variations of humic acids in two sola of Alberta Mollisols. Geoderma 65, 173-193.
Chen, Z.S., Asio, V.B., Yi, D.F., 1999. Characteristics and genesis of volcanic soils along a toposequence under a subtropical climate in Taiwan. Soil Science 164, 510-525.
Chen, Z.S., Tsou, T.C., Asio, V.B., Tsai, C.C., 2001. Genesis of Inceptisols on a volcanic landscape in Taiwan. Soil Science 166, 255-266.
Cheng, C.H., Hsiao, S.C., Huang, Y.S., Hung, C.Y., Pai, C.W., Chen, C.P., Menyailo, O.V., 2016. Landslide-induced changes of soil physicochemical properties in Xitou, Central Taiwan. Geoderma 265, 187-195.
Conte, P., Spaccini, R., Chiarella, M., Piccolo, A., 2003. Chemical properties of humic substances in soils of an Italian volcanic system. Geoderma 117, 243-250.
Day, P.R., 1965. Particle fractionation and particle-size analysis. In, Methods of soil analysis: Part 1 Physical and Mineralogical Properties, American Society of Agronomy, Wisconsin, USA, pp. 545-567.
Dungait, J.A.J., Hopkins, D.W., Gregory, A.S., Whitmore, A.P., 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology 18, 1781-1796.
Espino‐Mesa, M., Arbelo, C., Hernández‐Moreno, J., 1993. Predicting value of diagnostic soil properties on actual and potential cation exchange capacity (CEC) in andisols and andic soils. Communications in Soil Science and Plant Analysis 24, 2569-2584.
Eswaran, H., Vandenberg, E., Reich, P., 1993. Organic carbon in soils of the world. Soil Science Society of America Journal 57, 192-194.
Golchin, A., Clarke, P., Baldock, J.A., Higashi, T., Skjemstad, J.O., Oades, J.M., 1997. The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by C-13 NMR spectroscopy. 1. Whole soil and humic acid fraction. Geoderma 76, 155-174.
Hatcher, P.G., Schnitzer, M., Dennis, L.W., Maciel, G.E., 1981. Aromaticity of humic substances in soils. Soil Science Society of America Journal 45, 1089-1094.
Hatcher, P.G., Schnitzer, M., Vassallo, A.M., Wilson, M.A., 1989. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies. Geochimica et Cosmochimica Acta 53, 125-130.
Haumaier, L., Zech, W., 1995. Black carbon—possible source of highly aromatic components of soil humic acids. Organic Geochemistry 23, 191-196.
Hunter, C., Frazier, B., Busacca, A., 1987. Lytell series: a nonvolcanic Andisol. Soil Science Society of America Journal 51, 376-383.
Iamarino, M., Terribile, F., 2008. The importance of andic soils in mountain ecosystems: a pedological investigation in Italy. European Journal of Soil Science 59, 1284-1292.
Imaya, A., Ohta, S., Tanaka, N., Inagaki, Y., 2005. General chemical properties of brown forest soils developed from different parent materials in the Submontane Zone of the Kanto and Chubu Districts, Japan. Soil Science Plant Nutrition 51, 873-884.
Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10, 423-436.
Kögel-Knabner, I., de Leeuw, J.W., Hatcher, P.G., 1992. Nature and distribution of alkyl carbon in forest soil profiles: implications for the origin and humification of aliphatic biomacromolecules. Science of the Total Environment 117, 175-185.
Kleber, M., Mikutta, C., Jahn, R., 2004. Andosols in Germany—pedogenesis and properties. Catena 56, 67-83.
Leamy, M., 1988. International Committee on the Classification of Andisols (ICOMAND) Circular letter No. 10. New Zealand Soil Bureau, DSIR, Lower Hutt, New Zealand, p 80.
Madeira, M., Furtado, A., 1987. The instability of gibbsite and occurrence of other aluminous products in soils of perhumid climate regions of Portugal. Garcia de Orta, Série Geologia 10, 35-41.
Madeira, M., Füleky, G., Auxtero, E., 2007. Phosphate sorption of European volcanic soils. In, Soils of Volcanic Regions in Europe. Springer, New York City, USA, pp 353-367.
Matus, F., Rumpel, C., Neculman, R., Panichini, M., Mora, M.L., 2014. Soil carbon storage and stabilisation in andic soils: a review. Catena 120, 102-110.
McKeague, J., 1967. An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Canadian Journal of Soil Science 47, 95-99.
McKeague, J., Day, J.H., 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science 46, 13-22.
Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15, 1409-1416.
Mehra, O., Jackson, M., 1958. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In, National Conference on Clays and Clays Minerals, Pergamon press, London, United Kingdom, pp 317-327.
Mizota, C., Aomine, S., 1975. Relationships between the petrological nature and the clay mineral composition of volcanic ash soils distributed in the suburbs of Fukuoka-City, Kyushu. Soil Science and Plant Nutrition 21, 93-105.
Mizota, C., Van Reeuwijk, L., 1989. Clay mineralogy and chemistry of soils formed in volcanic material in diverse climatic regions. Soil monograph 2, ISRIC, Wageningen, The Netherlands., p 185.
Parfitt, R.L., Childs, C.W., 1988. Estimation of forms of Fe and Al - a review, and analysis of contrasting soils by dissolution and mossbauer methods. Australian Journal of Soil Research 26, 121-144.
Preston, C.M., 1996. Applications of NMR to soil organic matter analysis: history and prospects. Soil Science 161, 144-166.
Rasmussen, C., Southard, R.J., Horwath, W.R., 2006. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Global Change Biology 12, 834-847.
Saigusa, M., Shoji, S., Takahashi, T., 1980. Plant root growth in acid andosols from northeastern Japan: 2. Exchange acidity Y1 as a realistic measure of aluminum toxicity potential. Soil Science 130, 242-250.
Saunders, W., 1965. Phosphate retention by New Zealand soils and its relationship to free sesquioxides, organic matter, and other soil properties. New Zealand Journal of Agricultural Research 8, 30-57.
Schmidt, M.W., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49-56.
Schwertmann, U., 1985. The effect of pedogenic environments on iron oxide minerals. In, Advances in soil science. Springer, New York City, USA, pp. 171-200.
Shindo, H., Honna, T., Yamamoto, S., Honma, H., 2004. Contribution of charred plant fragments to soil organic carbon in Japanese volcanic ash soils containing black humic acids. Organic Geochemistry 35, 235-241.
Shoji, S., Fujiwara, Y., 1984. Active aluminum and iron in the humus horizons of andosols from northeastern Japan: their forms, properties, and significance in clay weathering. Soil Science 137, 216-226.
Shoji, S., Nanzyo, M., Dahlgren, R., 1994. Volcanic ash soils: genesis, properties and utilization. Elsevier, Amsterdam, Netherlands, p 288.
Simmons, J.A., Fernandez, I.J., Briggs, R.D., Delaney, M.T., 1996. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. Forest Ecology and Management 84, 81-95.
Sollins, P., Homann, P., Caldwell, B.A., 1996. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 74, 65-105.
Soil Survey Staff, 2011. Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45, Version 2.0. R. Burt (ed.). USDA-Natural Resources Conservation Service, Washington, DC, USA, p 506.
Soil Survey Staff, 2014. Keys to Soil Taxonomy. USDA-Natural Resources Conservation Service, Washington, DC, USA, p 360.
Sudo, T., Shimoda, S., 1978. Clays and clay minerals of Japan. Elsevier, Amsterdam, Netherlands, p 325.
Tinoco, P., Almendros, G., Gonzalez-Vila, F.J., Sanz, J., Gonzalez-Perez, J.A., 2015. Revisiting molecular characteristics responsive for the aromaticity of soil humic acids. Journal of Soils and Sediments 15, 781-791.
Tisdall, J.M., Oades, J.M., 1982. Organic-matter and water-stable aggregates in soils. Journal of Soil Science 33, 141-163.
Tonneijck, F.H., Jansen, B., Nierop, K.G.J., Verstraten, J.M., Sevink, J., De Lange, L., 2010. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. European Journal of Soil Science 61, 392-405.
Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M., 1997. Mineral control of soil organic carbon storage and turnover. Nature 389, 170-173.
Tsai, C.C., Chen, Z.S., Kao, C.I., Ottner, F., Kao, S.J., Zehetner, F., 2010. Pedogenic development of volcanic ash soils along a climosequence in Northern Taiwan. Geoderma 156, 48-59.
Tsui, C.C., Tsai, C.C., Chen, Z.S., 2013. Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan. Geoderma 209, 119-127.
Ussiri, D.A.N., Johnson, C.E., 2003. Characterization of organic matter in a northern hardwood forest soil by C-13 NMR spectroscopy and chemical methods. Geoderma 111, 123-149.
Von Lutzow, M., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. European Journal of Soil Science 57, 426-445.
Wada, K., Higashi, T., 1976. The categories of aluminium‐and iron‐humus complexes in ando soils determined by selective dissolution. Journal of Soil Science 27, 357-368.
Wada, K., Gunjigake, N., 1979. Active aluminum and iron and phosphate adsorption in ando soils. Soil Science 128, 331-336.
Wagai, R., Mayer, L.M., Kitayama, K., Shirato, Y., 2013. Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis. Biogeochemistry 112, 95-109.
Walker, T., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. Geoderma 15, 1-19.
Wang, W., Chen, C.H., 1990. The volcanology and fission track age dating of pyroclastic deposits in Tatun Volcano Group, northern Taiwan. Acta Geologica Taiwanica 28, 1-40.
Wilke, B.M., Schwertmann, U., 1977. Gibbsite and halloysite decomposition in strongly acid podzolic soils developed from granitic saprolite of the Bayerischer Wald. Geoderma 19, 51-61.
Yonebayashi, K., Hattori, T., 1988. Chemical and biological studies on environmental humic acids. 1. composition of elemental and functional-groups of humic acids. Soil Science and Plant Nutrition 34, 571-584.
Zech, W., Ziegler, F., Kögel-Knabner, I., Haumaier, L., 1992. Humic substances distribution and transformation in forest soils. Science of the Total Environment 117, 155-174.
Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T.M., Miltner, A., Schroth, G., 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79, 117-161.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51247-
dc.description.abstract土壤是陸域生態系最大的碳庫之一,土壤儲存有機碳的能力一部分受到其土壤性質所影響,而化育自火山母質的土壤,在風化後一般來說含有較高的無定形礦物下,其土壤往往較化育自其他母質的土壤儲存較多的有機碳。以臺灣而言,大屯火山群是最著名的火成岩化育土壤,本研究以大屯火山群火成岩母質化育土壤為例子,選擇三個鄰近火成岩與沉積岩化育土壤樣區,探討火成岩化育土壤與鄰近沉積岩土壤之有機碳含量與土壤性質的差異。選擇樣區依海拔高度由低至高,分別為觀音山、大崎頭與風櫃嘴等三個比較樣區,此外,本研究並同時選擇典型火成岩化育土壤 (紗帽山) 與典型沉積岩化育土壤 (大崙頭) 作為參考樣區。
土壤分析包括土壤基本性質、鐵、鋁與矽的選擇性抽出、腐植酸 (humic acid) 萃取與腐植酸固態核磁共振光譜分析等。此外,為確保採樣的土壤之母質,本研究也進行土壤砂粒部分之X光繞射分析 (XRD)。
結果顯示土壤有機碳濃度除了風櫃嘴地區的火成岩化育土壤與沉積岩化育土壤無顯著差異外,觀音山、大崎頭樣區均是火成岩化育土壤有機碳濃度顯著大於沉積岩化育土壤,而典型火成岩化育土壤有機碳濃度又遠比上述三個比較樣區的火成岩化育土壤還高。土壤選擇性萃取鐵、鋁結果顯示,觀音山與大崎頭樣區,酸性草酸銨萃取之鐵、鋁於火成岩化育土壤含量顯著高於沉積岩化育土壤;而在風櫃嘴樣區,火成岩化育土壤之酸性草酸銨萃取之鐵、鋁未與沉積岩化育土壤有顯著差異,且以焦磷酸鈉法萃取之鐵、鋁顯著低於沉積岩化育土壤。以上結果顯示低海拔火成岩化育土壤的高活性鐵、鋁,可保護有機物,使得火成岩化育土壤的土壤有機碳濃度較沉積岩化育土壤高,但在溫度較低、降雨較高的高海拔樣區,強酸性的土壤環境可造成有機質以鐵、鋁錯合物形式累積,造成沉積岩化育土壤與火成岩化育的土壤有機碳濃度無顯著差異。腐植酸部份之13C NMR分析結果顯示除了典型火成岩化育土壤有較多的Aryl與較少的Alkyl以外,來自其他土壤的腐植酸在組成上的差異不大,除可能顯示典型火成岩之腐植酸其腐植化程度較高之外,隨著火成岩土壤之化育,腐植酸的結構也會有所差異。X光繞射分析的結果顯示,沉積岩化育土壤其土壤礦物組成均為石英 (Quartz),而火成岩化育土壤除了石英以外仍有其他礦物,例如白矽石、紫蘇輝石、角閃石等,視火成岩之母質來源與風化程度而定,進一步證明選擇樣區的土壤化育母質。
根據上述結果,可以推論:(1) 火成岩化育土壤較沉積岩化育土壤有較高的土壤有機碳含量,主要受到土壤中較高的活性鐵鋁含量的緣故;(2) 三個比較樣區之火成岩化育土壤失去了些許火山灰土壤性質,以至於跟典型火成岩土壤比較之下,儲存較少的有機碳;(3) 較高海拔風櫃嘴樣區之沉積岩化育土壤由於其溫度較低與雨量較高,加上土壤的高有機鐵鋁含量,使得風櫃嘴沉積岩樣區土壤可藉由有機鐵鋁的錯合型態,造成沉積岩化育土壤與火成岩化育土壤有相似的土壤有機碳量;(4) 根據腐植酸分析結果來看,土壤所儲存有機碳的性質可能會隨著土壤化育失去火山灰土壤性質而受到改變;(5) 三個比較樣區的火成岩化育土壤,由於化育程度相對較高,多少失去了部分火山灰土壤性質,使得土壤中活性鐵鋁逐漸轉變成結晶鐵鋁,且反映在三個比較樣區中土壤部分的Feo與Alo含量未隨著母質不同而有顯著差異;(6) 樣區的CEC主要隨著有機碳濃度與活性鐵鋁含量而有差異,因此三個比較樣區的火成岩化育土壤之CEC均顯著高於沉積岩化育土壤之CEC;至於交換性鹽基則因為受到強烈的淋洗影響,使得整體上無論於何種母質的交換性鹽基均偏低。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T13:28:28Z (GMT). No. of bitstreams: 1
ntu-105-R01625028-1.pdf: 3550248 bytes, checksum: 30f563d316103ddcca921c7cf0cc3529 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 I
Abstract III
圖目錄 VI
表目錄 VIII
第一章 前言 1
第二章 材料方法 4
第一節 土壤樣體之選擇與採樣 4
第二節 土壤分析 16
一、物理性質之分析 16
二、化學性質之分析 16
三、土壤礦物之分析 20
四、腐植酸 (Humic acid) 萃取與固態核磁共振碳-13光譜儀分析 20
五、統計分析 21
第三章 結果 22
一、土壤剖面之形態特徵 22
二、土壤物理性質 30
三、土壤一般化學性質 34
四、土壤之選擇性萃取 42
五、土壤有機碳濃度與選擇性萃取鐵鋁含量之相關性 46
六、土壤砂粒部分之XRD礦物分析 55
七、土壤有機物分析 58
第四章 討論 61
一、火成岩與沉積岩化育土壤之性質差異 62
二、火成岩化育土壤有別於鄰近的沉積岩化育土壤保存有機碳的可能機制 76
第六章 結論 79
參考文獻: 80
附錄: 89
dc.language.isozh-TW
dc.subject沉積岩zh_TW
dc.subject沉積岩zh_TW
dc.subject腐植酸zh_TW
dc.subject土壤有機碳zh_TW
dc.subject選擇性萃取zh_TW
dc.subject腐植酸zh_TW
dc.subject土壤有機碳zh_TW
dc.subject選擇性萃取zh_TW
dc.subject火成岩zh_TW
dc.subject火成岩zh_TW
dc.subjectselective extractionen
dc.subjecthumic aciden
dc.subjectsoil organic carbonen
dc.subjectselective extractionen
dc.subjectvolcanic rocksen
dc.subjectsedimentary rocksen
dc.subjecthumic aciden
dc.subjectvolcanic rocksen
dc.subjectsoil organic carbonen
dc.subjectsedimentary rocksen
dc.title鄰近火成岩與沉積岩母質化育土壤之性質與碳儲存量差異zh_TW
dc.titleDifferences in soil properties and organic carbon storage of soils derived from adjacent volcanic and sedimentary parent materialen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳尊賢,白創文
dc.subject.keyword沉積岩,火成岩,選擇性萃取,土壤有機碳,腐植酸,zh_TW
dc.subject.keywordsedimentary rocks,volcanic rocks,selective extraction,soil organic carbon,humic acid,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2016-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved