Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorShuang-Yuan Changen
dc.contributor.author張瀧元zh_TW
dc.date.accessioned2021-06-15T13:27:36Z-
dc.date.available2021-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-15
dc.identifier.citation[1] T. Ameri, N. Lia, C. J. Brabec, “Highly efficient organic tandem solar cells: a follow up review”, Energy Environ. Sci. 6 (2013) 2390.
[2] A. Blakers, N. Zin, K. R. McIntosh, K. Fong, “High Efficiency Silicon Solar Cells”, Energy Procedia 33 (2013) 1.
[3] O. Isabella, A. H. M. Smets, M. Zeman, “Thin-film silicon-based quadruple junction solar cells approaching 20% conversion efficiency”, Sol. Energ. Mat. Sol. C. 129 (2014) 82.
[4] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells”, Nat. Commun. 5 (2014) 5293.
[5] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Commun. 4 (2013) 1446.
[6] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc. 17 (2009) 6050.
[7] Perovskites and Perovskite Solar Cells: An Introduction (2014-09-23) http://www.ossila.com/pages/perovskites-and-perovskite-solar-cells-an-introduction
[8] T. L. Benanti, D. Venkataraman, “Organic solar cells: An overview focusing on active layer morphology”, Springer 87 (2006) 73.
[9] S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, S. II Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor”, Energy Environ. Sci. 7 (2014) 2614.
[10] Y.-W. Su, S.-C. Lan, K.-H. Wei, “Organic photovoltaics”, Mater. Today 15 (2012) 554.
[11] Y. Zhou, M. Eck, M. Kruger, “Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers”, Energy Environ. Sci. 3 (2010) 1851.
[12] X. Fan, C. Cui, G. Fang, J. Wang, S. Li, F. Cheng, H. Long, Y. Li., “Efficient Polymer Solar Cells Based on Poly(3-hexylthiophene):Indene-C70 Bisadduct with a MoO3 Buffer Layer”, Adv. Funct. Mater. 22 (2012) 585.
[13] G. Namkoong, P. Boland, K. Lee, J. Dean, “Design of organic tandem solar cells using PCPDTBT : PC 61 BM and P 3 HT : PC 71 BM”, J. Appl. Phys. 107 (2010) 124515.
[14] L. Huo, T. Liu, X. Sun, Y. Cai, A. J. Heeger, Y. Sun, “Single-Junction Organic Solar Cells Based on a Novel Wide-Bandgap Polymer with Effi ciency of 9.7%”, Adv. Mater. 27 (2015) 2938.
[15] L. Ye, S. Zhang, W. Zhao, H. Yao, J. Hou, “Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain”, Chem. Mater. 26 (2014) 3603
[16] T. L. Nguyen, H. Choi, S.-J. Ko, M. A. Uddin, B. Walker, S. Yum, J.-E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, H. Y. Woo, “Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a 300 nm thick conventional single-cell device”, Energy Environ. Sci. 7 (2014) 3040.
[17] M. Zhang, X. Guo, W. Ma, H. Ade, J. Hou, “A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance”, Adv. Mater. 27 (2015) 4655.
[18] L. Lu, W. Chen, T. Xu, L. Yu, “High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes”, Nat. Commun. 6 (2015) 7327.
[19] W. Chen, Z. Du, M. Xiao, J. Zhang, C. Yang, L. Han, X. Bao, R. Yang, “High-Performance Small Molecule/Polymer Ternary Organic Solar Cells Based on a Layer-By-Layer Process”, ACS Appl. Mater. Interfaces 7 (2015) 23190.
[20] L. Lu, T. Xu, W. Chen, E. S. Landry, L. Yu, “Ternary blend polymer solar cells with enhanced power conversion efficiency”, Nat. Photonics 8 (2014) 716.
[21] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y.Wu, G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency”, Nat. Photonics 3 (2009) 649.
[22] M.-S. Su, C.-Y. Kuo, M.-C. Yuan, U-S. Jeng, C.-J. Su, K.-H. Wei, “Improving Device Effi ciency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives”, Adv. Mater. 23 (2011) 3315.
[23] H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, “Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency”, Angew. Chem. Int. Ed. 50 (2011) 2995.
[24] C.-C. Ho, C.-A. Chen, C.-Y. Chang, S. B. Darling, W.-F. Su, “Isoindigo-based copolymers for polymer solar cells with efficiency over 7%”, J. Mater. Chem. A 2 (2014) 8026.
[25] K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J. M. White, R. M. Williamson, J. Subbiah, J. Ouyang, A. B. Holmes, W. W.H. Wong, D. J. Jones, “A molecular nematic liquid crystalline material for high-performance organic photovoltaics”, Nat. Commun. 6 (2015) 6013.
[26] K. M. O’Malley, C.-Z. Li, H.-L. Yip, A. K.-Y. Jen, “Enhanced Open-Circuit Voltage in High Performance Polymer/Fullerene Bulk-Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant”, Adv. Energy Mater. 2 (2012) 82.
[27] H. Hu, K. Jiang, G. Yang, J. Liu, Z. Li, H. Lin, Y. Liu, J. Zhao, J. Zhang, F. Huang, Y. Qu, W. Ma, H. Yan, “Terthiophene-Based D−A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells”, J. Am. Chem. Soc. 137 (2015) 14149.
[28] Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage”, Nat. Photonics 9 (2015) 174.
[29] J. Zhang, Y. Zhang, J. Fang, K. Lu, Z. Wang, W. Ma, Z. Wei, “Conjugated Polymer−Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells”, J. Am. Chem. Soc. 137 (2015) 8176.
[30] J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, J.-X. Tang, “Single-Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency”, Adv. Mater. 27 (2015) 1035.
[31] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure”, Nat. Photonics 6 (2012) 591.
[32] C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T.-H. Lai, J. R. Reynolds, F. So, “High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells”, Nat. Photonics 6 (2012) 115.
[33] Z. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou, Y. Li, “High-Performance Inverted Polymer Solar Cells with Solution-Processed Titanium Chelate as Electron-Collecting Layer on ITO Electrode”, Adv. Mater. 24 (2012) 1476.
[34] J. You, C.-C. Chen, L. Dou, S. Murase, H.-S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, Y. Yang, “Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Performance and Stable Inverted Polymer Solar Cells”, Adv. Mater. 24 (2012) 5267.
[35] C.-Y. Chang, Y.-J. Cheng, S.-H. Hung, J.-S. Wu, W.-S. Kao, C.-H. Lee, C.-S. Hsu, “Combination of Molecular, Morphological, and Interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells”, Adv. Mater. 24 (2012) 549.
[36] D. B. Mitzi, J. Chem. Soc., “Templating and structural engineering in organic–inorganic perovskites”, Dalton Trans. (2001) 1.
[37] T.-Y. Chu, S.-W. Tsang, J. Zhou, P. G.Verly, J. Lu, S. Beaupre, M. Leclerc, Y. Tao, “High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability”, Sol. Energ. Mat. Sol. C. 96 (2012) 155.
[38] J. You, Z. Hong, M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, “Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility”, ACS Nano. 8 (2014) 1674.
[39] H. Oga, A. Saeki, Y. Ogomi, S. Hayase, S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps”, J. Am. Chem. Soc. 136 (2014) 13818.
[40] F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, “Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells”, J. Am. Chem. Soc. 136 (2014) 8094.
[41] NREL, “Best Research-Cell Efficiency”, http://www.nrel.gov/ncpv/
[42] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaislkar, T. C. Sum, “Long-Range Balanced Electronand Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3”, Science 342 (2013) 344.
[43] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber”, Science 342 (2013) 341.
[44] H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park, J. Bisquert, “Mechanism of carrier accumulation in perovskite thin-absorber solar cells”, Nat. Commun. 4 (2013) 2242.
[45] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells”, Nat. Nanotechnol. 9 (2014) 927.
[46] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. II. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nat.Mater. 13 (2014) 897.
[47] D. Liu, T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, Nat. Photonics 8 (2014) 133.
[48] J. Burschka, N. Pellet, S.-J. Moon, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499 (2013) 316.
[49] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, M. Gratzel, “Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency”, Nat. Commun. 5 (2014) 3834.
[50] O. Malinkiewicz1, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers”, Nat.Photonics 8 (2014) 128.
[51] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, S. II. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors”, Nat. Photonics 7 (2013) 486.
[52] D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, “11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System”, J. Phys. Chem. C 118 (2014) 16567.
[53] D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures”, RSC Adv. 3 (2013) 18762.
[54] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Sci. Rep. 2 (2012) 591.
[55] M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, N. Mathews, “Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells”, Chem. Commun. 49 (2013) 11089.
[56] K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W. -G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen, “p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells”, Sci. Rep. 4 (2014) 4756.
[57] H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.-G. Park, “High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer”, Nano Lett. 13 (2013) 2412.
[58] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science 345 (2014) 542.
[59] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature 501 (2013) 395.
[60] M. M. Lee, J. Teuscher, T. M iyasaka, T. N. Murakami, H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, Science 338 (2012) 643.
[61] B. Conings, L. Baeten, C. D. Dobbelaere, J. D’Haen, J. Manca, H.-G. Boyen, “Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach”, Adv. Mater. 26 (2013) 2041.
[62] S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, S. II. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor”, Energy Environ. Sci. 7 (2014) 2614.
[63] B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, J. Qiu, “High performance hybrid solar cells sensitized by organolead halide perovskites”, Energy Environ. Sci. 6 (2013) 1480.
[64] E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, “Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open- Circuit Voltage Solar Cells”, J. Phys. Chem. Lett. 5 (2014) 429.
[65] E. Edri, S. Kirmayer, D. Cahen, G. Hodes, “High Open-Circuit Voltage Solar Cells Based on Organic−Inorganic Lead Bromide Perovskite”, J. Phys. Chem. Lett. 4 (2013) 897.
[66] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. II. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells”, Nano Lett. 13 (2013) 1764.
[67] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. II Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science 348 (2015) 1234.
[68] J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, “High-Effi ciency Perovskite Solar Cells Based on the Black Polymorph of HC(NH 2 ) 2 PbI3”, Adv. Mater. 26 (2014) 4991.
[69] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci. 7 (2014) 982.
[70] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, T. Baikie, “Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells”, J. Phys. Chem. C 118 (2014) 16458.
[71] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Gratzel, Angew. “Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting”, Chem. Int. Ed. 53 (2014) 3151.
[72] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, M. B. Johnston, A. M. Petrozza, L. M. Herz, H. J. Snaith, “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications”, Energy Environ. Sci. 7 (2014) 3061.
[73] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, “Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells”, Nat. Photonics 8 (2014) 489.
[74] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase, “CH3NH3SnxPb(1−x)I3 Perovskite Solar Cells Covering up to 1060 nm”, J. Phys. Chem. Lett. 5 (2014) 1004.
[75] J.-H. Im, H.-S. Kim, N.-G. Park, “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3Pb3”, APL Mater. 2 (2014) 81510.
[76] M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility”, Nat. Commun. 3 (2012) 770.
[77] D. J. Lipomi, Z. Bao, “Stretchable, elastic materials and devices for solar energy conversion”, Energy Environ. Sci. 4 (2011) 3314.
[78] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science 347 (2015) 522.
[79] Y. Liu, S. Ji, S. Li, W. He, K. Wang, H. Hu, C. Ye, J. Mater. “Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell”, Chem. A 3 (2015) 14902.
[80] D. Liu, J. Yang, T. L. Kelly, “Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency”, J. Am. Chem. Soc.136 (2014) 17116.
[81] C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleo, M. D. McGehee, “Semi-transparent perovskite solar cells for tandems with silicon and CIGS”, Energy Environ. Sci. 8 (2015) 956.
[82] P. Loper, S.-J. Moon, S. M. d. Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat , J.-H. Yum, S. D. Wolf, C. Ballif, “Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells”, Phys. Chem. 17 (2015) 1619.
[83] S. Sista, Z. Hong, L.-M. Chen, Y. Yang, “Tandem polymer photovoltaic cells—current status, challenges and future outlook”, Energy Environ. Sci. 4 (2011) 1606.
[84] L. Dou, W.-H. Chang, J. Gao, C.-C. Chen, J. You, Y. Yang, “A Selenium-Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications”, Adv. Mater. 25 (2013) 825.
[85] A. Hadipour, B. D. Boer, P. W. M. Blom, “Organic Tandem and Multi-Junction Solar Cells”, Adv. Funct. Mater. 18 (2008) 169.
[86] C.-C. Chen, S.-H. Bae, W.-H. Chang, Z. Hong, G. Li, Q. Chen, H. Zhou, Y. Yang, “Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process”, Mater. Horiz 2 (2015) 203.
[87] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing”, Science 317 (2007) 222.
[88] S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, Y. Yang, “Highly Efficient Tandem Polymer Photovoltaic Cells”, Adv. Mater. 22 (2010) 380.
[89] W. Li, A. Furlan, K. H. Hendriks, M. M. Wienk, R. A. J. Janssen, “Efficient Tandem and Triple-Junction Polymer Solar Cells”, J. Am. Chem. Soc. 135 (2013) 5529.
[90] H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, A. J. Heeger, “Polymer Homo-Tandem Solar Cells with Best Efficiency of 11.3%”, Adv. Mater. 27 (2015) 1767.
[91] J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, Y. Yang, “A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells”, Adv. Mater. 23 (2011) 3465.
[92] V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, R. A. J. Janssen, “Solution Processed Polymer Tandem Solar Cell Using Efficient Small and Wide bandgap Polymer:Fullerene Blends”, Adv. Mater. 24 (2012) 2130.
[93] J. Kong, J. Lee, G. Kim, H. Kang, Y. Choi, K. Lee, “Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell”, Phys. Chem. Chem. Phys. 14 (2012) 10547.
[94] J. Sakai, K. Kawano, T. Yamanari, T. Taima, Y. Yoshida, A. Fujii, M. Ozaki, “Efficient Organic Photovoltaic Tandem Cells with Poly (3-hexylthiophene): Fullerene Active Layers and Transparent Conductive Oxide Interlayer”, Sol. Energ. Mat. Sol. C. 94 (2009) 2260.
[95] N. Li, C. J. Brabec, “Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%”, Energy Environ. Sci. 8 (2015) 2902.
[96] J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, Y. Yang, “10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells”, Adv. Mater. 25 (2013) 3973.
[97] Z. Zheng, S. Zhang, M. Zhang, K. Zhao, L. Ye, Y. Chen, B. Yang, J. Hou, “Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range”, Adv. Mater. 27 (2015) 1189.
[98] Abd. R. b. M. Yusoff, S. J. Lee, H. P. Kim, F. K. Shneider, W. J. d. Silva, J. Jang, “8.91% Power Conversion Efficiency for Polymer Tandem Solar Cells”, Adv. Funct. Mater. 24 (2014) 2240.
[99] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer”, Nat. Photonics 6 (2012) 180.
[100] S. Kouijzer, S. Esiner, C. H. Frijters, M. Turbiez, M. M. Wienk, R. A. J. Janssen, “Efficient Inverted Tandem Polymer Solar Cells with a Solution-Processed Recombination Layer”, Adv. Energy Mater. 2 (2012) 945.
[101] C.-H. Chou, W. L. Kwan, Z. Hong, L.-M. Chen, Y. Yang, “A Metal-Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture”, Adv. Mater. 23 (2011) 1282.
[102] J. Falin, W. Li, “A boost-topology battery charger powered from a solar panel”, Analog Appli. J. 3 (2011) 17.
[103] C. D. Bailie, M. D. McGehee, “High-efficiency tandem perovskite solar cells”, MRS Bulletin 40 (2015) 681.
[104] G. Heise, A. Heiss, C. Hellwig, T. Kuznicki, H. Vogt, J. Palm, H. P. Huber, “Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells”, Prog. Photovolt: Res. Appl. 21 (2013) 681.
[105] C. Zuoab, L. Ding, “Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm”, J. Mater. Chem. A 3 (2014) 9063.
[106] Y. Liu, Z. Hong, Q. Chen, W. Chang, H. Zhou, T.-B. Song, E. Young, M. Yang, J. You, G. Li, Y. Yang, “Integrated Perovskite/Bulk-Heterojunction toward Efficient Solar Cells”, Nano Lett. 15 (2015) 662.
[107] Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, E. Nakamura, “Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer”, J. Mater. Chem. A 2 (2014) 13827.
[108] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. v. Schilfgaarde, A. Walsh, “Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells”, Nano Lett. 14 (2014) 2584.
[109] M. G. Hasab, F. Rashchi, S. Raygan, “CHLORIDE–HYPOCHLORITE OXIDATION AND LEACHING OF REFRACTORY SULFIDE GOLD CONCENTRATE”, Physicochem. Probl. Miner. Process. 49 (2013) 61.
[110] J. D. Servaites, S. Yeganeh, T. J. Marks, M. A. Ratner, “Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance”, Adv. Funct. Mater. 20 (2010) 97.
[111] J. R. Tumbleston, D.-H. Ko, E. T. Samulski, R. Lopez, “Nonideal parasitic resistance effects in bulk heterojunction organic solar cells”, J. Appl. Phys. 108 (2010) 084514.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51212-
dc.description.abstractP3HT:ICBA有機高分子太陽能電池由於效率高、穩定性佳且單體結構簡單,故已被廣泛的研究。而有機-無機鈣鈦礦材料由於具有雙極特性,在經光照射後,此材料能自行產生電壓,故本研究結合了P3HT:ICBA與鈣鈦礦系統,藉由導入鈣鈦礦高驅動電壓材以提升P3HT:ICBA太陽能電池的電壓表現。在此修飾型元件中,我們採用全無退火的中間層、鈣鈦礦前驅物與用以輔助鈣鈦礦的電洞傳導層製程。目的除了能減少製程的耗能與成本,還能增加主動層材料的選擇性。結果顯示中間層採用3nm MoO3/ZnO的鈣鈦礦修飾P3HT:ICBA太陽能電池與電洞傳導層採用3nm MoO3的P3HT:ICBA太陽能電池標準片做比較,開路電壓由0.86V 提升至1.60V;效率由3.34%提升4.35%。此外,在超過210天(5,040小時)的儲放下,與第一天的量測結果相比,修飾型元件僅衰減3%。而修飾型元件的開路電壓表現仍然可以維持在1.55V以上的水準,這項紀錄相當有價值,因為正常來說市售電器須在電壓為1.50V時的情況被驅動。
另一方面,為了簡化製作流程,我們將鈣鈦礦修飾層前後的電子與電洞傳導材移除,發現中間層採用11nm MoO3的鈣鈦礦修飾P3HT:ICBA太陽能電池較電洞傳導層採用11nm MoO3的P3HT:ICBA太陽能電池標準片,電壓由0.82V 提升至1.28V,效率由3.03%提升至3.40%,驗證了單層鈣鈦礦材料也可以做為太陽能電池的高驅動電壓材。
最後,我們證實在實際的應用上,不管是在一顆太陽光或弱光下,修飾型元件都能提供足夠的電壓輸出並成功驅動市售電器。
zh_TW
dc.description.abstractP3HT:ICBA polymer solar cell system has been extensively investigated in recent year due to its high efficiency, high stability and the ease of synthesis. On the other hand, organic-inorganic hybrid perovskites have the ambipolar property, which can produce voltage by themselves under light irradiation. In this work, we combine the P3HT:ICBA and perovskite system by introducing perovskite as high voltage driver into P3HT:ICBA solar cells to enhance their voltage performance. In order to reduce the energy consumption and increase more extensive choices of materials in active layers, we develop the whole non-annealing fabrication process, the interconnecting layers, perovskite layer and hole transport layer of perovskite are process without annealing. Compared with the standard P3HT:ICBA solar cell, the CH3NH3PbI3-modified P3HT:ICBA solar cell with 3nm MoO3/ZnO interconnecting layers show significant enhancement in open circuit voltage (Voc) and power conversion efficiency (PCE), increase from 0.86V to 1.60V and 3.34% to 4.35%, respectively. Under more than 210 days (5,040 hours) storage, compared 210th with 1st day measuring Voc results of the CH3NH3PbI3-modified P3HT:ICBA solar cell with 3nm MoO3/ZnO decays within 3%. Besides, the Voc of the modified solar cell can still maintain above 1.55V, which is valuable record because normally the commercial appliances need to be driven above 1.50V.
To simplify the manufacturing process, we also try to remove the electron and hole transport layers of perovskite. Compared with the standard P3HT:ICBA solar cell, the CH3NH3PbI3-modified P3HT:ICBA solar cell with 11nm MoO3 interconnecting layer exhibits great improvement in Voc and PCE, raise from 0.82V to 1.28V and 3.03% to 3.40%, respectively. It proves that single perovskite layer can be the high voltage driver of P3HT:ICBA solar cells.
Finally, for the practical application, we successfully prove that our modified solar cells can provide enough voltage output to drive commercial appliances no matter under one sun or dim light irradiation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:27:36Z (GMT). No. of bitstreams: 1
ntu-105-R01527033-1.pdf: 2811062 bytes, checksum: 48fb17b6baa08235cb28dbf89328c550 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 X
第一章:前言 1
1.1 太陽能電池的近況發展 1
1.2 太陽能電池效率的評估及相關參數意義 2
1.2.1 開路電壓 (open circuit voltage, Voc) 2
1.2.2 短路電流 (short circuit current, Isc) 3
1.2.3 填充因子 (fill factor) 4
1.2.4 I-V曲線 5
1.2.5 光電轉換效率 (power conversion efficiency) 6
1.3 高分子太陽能電池的工作原理與近期元件表現 6
1.3.1 高分子太陽能電池的工作原理 7
1.3.2 高分子太陽能電池的近期元件光電轉換效率表現 9
1.4 鈣鈦礦太陽能電池的工作原理與近期元件表現 13
1.5 串疊型太陽能電池 20
1.5.1 串聯的等效電路意義 20
1.5.2 高分子串疊型太陽能電池近期元件表現 21
1.6 修飾型太陽能電池近期元件表現 26
1.7 研究動機及目標 31
第二章:實驗方法 32
2.1 化學物質列表 32
2.2 儀器與測量方法 34
2.3 材料的合成與製備 35
2.3.1甲基碘化胺(MAI) 35
2.3.2 ZnO奈米粒子溶液 35
2.3.3 P3HT:ICBA溶液 36
2.3.4 PbI2與MAI的前驅物溶液 36
2.3.5 Spiro-OMeTAD溶液 37
2.4 CH3NH3PbI3修飾的高分子太陽能電池其製備程序 37
第三章:結果與討論 40
3.1 以PEDOT:PSS(AI 4083)與ZnO作為中間層的修飾型太陽能電池 41
3.1.1 未經修飾高分子太陽能電池的元件表現 41
3.1.2 修飾型太陽能電池的元件表現 43
3.1.3 穩定性測試 44
3.2 以PEDOT:PSS(CPP)與ZnO作為中間層的修飾型太陽能電池 46
3.2.1 未修飾高分子太陽能電池的元件表現 47
3.2.2 修飾型太陽能電池的元件表現 48
3.2.3 穩定性測試 50
3.3 以MoO3與ZnO作為中間層的修飾型太陽能電池 52
3.3.1 未修飾高分子太陽能電池的元件表現 53
3.3.2 修飾型太陽能電池的元件表現 54
3.3.3 外部量子效率量測 (EQE) 55
3.3.4 穩定性測試 56
3.3.5 應用示範 58
3.4 無電子與電洞傳導層輔助CH3NH3PbI3的修飾型太陽能電池 60
3.4.1 修飾型太陽能電池的元件表現 60
第四章:結論與建議 64
4.1 結論 64
4.2 建議 66
第五章:參考文獻 67
dc.language.isozh-TW
dc.subject鈣鈦礦zh_TW
dc.subject高驅動電壓zh_TW
dc.subject太陽能電池zh_TW
dc.subject中間層zh_TW
dc.subjectinterconnecting layersen
dc.subjectperovskiteen
dc.subjecthigh voltage driveren
dc.subjectmodified solar cellsen
dc.subjectinterconnecting layersen
dc.subjectperovskiteen
dc.subjecthigh voltage driveren
dc.subjectmodified solar cellsen
dc.titleCH3NH3PbI3高驅動電壓材修飾P3HT:ICBA太陽能電池的製作與應用zh_TW
dc.titleFabrication and Application of CH3NH3PbI3-Modified P3HT:ICBA High Voltage Solar Cellsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王立義(Lee-Yih Wang),林清富(Ching-Fuh Lin),吳明忠(Ming-Chung Wu)
dc.subject.keyword鈣鈦礦,高驅動電壓,太陽能電池,中間層,zh_TW
dc.subject.keywordperovskite,high voltage driver,modified solar cells,interconnecting layers,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2016-02-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved