Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51198
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雨(U Lei)
dc.contributor.authorYou-Yi Xuen
dc.contributor.author徐有毅zh_TW
dc.date.accessioned2021-06-15T13:27:16Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation[1] R. P. Feynman, 'There's plenty of room at the bottom,' Lecture on December 26, 1959, at the annual meeting of American Physical Society, at the California Institute of Technology; reprinted in Journal of Microelectromechanical Systems, 1, 60-66 (1992).
[2] N. Taniguchi, 'On the basic concept of nano-technology,' Proceedings of the international conference on production engineering,Tokyo, Part II, Japan Society of Precision Engineering, (1974).
[3] 李雨、施博仁、江宏仁、趙聖德、李皇德、陳瑞林、陳冠宇, '奈米科技中的力學,' 國立臺灣大學出版中心, (2018).
[4] S. U. Choi and J. A. Eastman, 'Enhancing thermal conductivity of fluids with nanoparticles,' in Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, FED–231/MD-66: 99–105 (1995).
[5] P. Shima, J. Philip, and B. Raj, 'Magnetically controllable nanofluid with tunable thermal conductivity and viscosity,' Vol. 95, No. 13, 133112, (2009).
[6] S. S. Papell, 'Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles,' US Patent 3 215 572 (1965).
[7] R. E. Rosensweig, 'Ferrohydrodynamics,' Courier Dover Publications, Mineola, NY, (2013).
[8] S. Odenbach, 'Magnetoviscous Effects in Ferrofluids,' Springer-Verlag, (2002).
[9] J. P. McTague, 'Magnetoviscosity of magnetic colloids,' Journal of Chemical Physics, Vol. 51, No. 1, pp. 133-136, (1969).
[10] N. Andhariya, B. Chudasama, R. Patel, R. Upadhyay, and R. V. Mehta, 'Field induced rotational viscosity of ferrofluid: Effect of capillary size and magnetic field direction,' Journal of Colloid Interface Science, Vol. 323, No. 1, pp. 153-157, (2008).
[11] L. Pop and S. Odenbach, 'Capillary viscosimetry on ferrofluids,' Journal of Physics - Condensed Matter, Vol. 20, No. 20, 204139, (2008).
[12] J. Linke and S. Odenbach, 'Anisotropy of the magnetoviscous effect in a ferrofluid with weakly interacting magnetite nanoparticles,' Journal of Physics - Condensed Matter, Vol. 27, No. 17, 176001, (2015).
[13] 劉宇恩, '以狹縫黏度計研究磁性奈米流體之黏度,' 臺灣大學應用力學研究所學位論文, (2019).
[14] 張銘軒, '磁場效應對奈米流體黏度之影響,' 臺灣大學應用力學研究所學位論文, (2016).
[15] 周士凱, '四氧化三鐵奈米流體在磁場作用下之黏度實驗探討,' 臺灣大學應用力學研究所學位論文, (2018).
[16] 顏佑軒, '磁性奈米流體黏度的實驗研究,' 臺灣大學應用力學研究所學位論文(2019).
[17] M. Lee, 'X-ray diffraction for materials research,' Apple Academic Press, New York (2016).
[18] https://www.rigaku.com/products/xrd/smartlab-se.
[19] https://www.yumpu.com/en/document/read/2744604/novatm-nanosem-230-fei-company.
[20] https://www.malvernpanalytical.com/en/products/product-range/zetasizer-range/zetasizer-nano-range/zetasizer-nano-zs.
[21] T. Weser and K. Stierstadt, “Discrete particle size distribution in ferrofluids,” Zeitschrift Fur Physik B-Condensed Matter, Vol. 59, No. 3, pp. 253-256 (1985).
[22] F. M. White, 'Fluid Mechanics,' 7th ed., McGraw Hill, (2011).
[23] F. M. White, “Viscous fluid flow,” Second edition, McGraw-Hill, (1991).
[24] A. Einstein, “Eine neue Bestimmung der Molekuldimensionen”, Annalen der Physik 19. 289-306 (1905).
[25] Israelachvili, J.N., 'Intermolecular and surface forces: revised third edition,' Academic Press (2011)
[26] S. Mørup, M. F. Hansen, and C. Frandsen, 'Magnetic interactions between nanoparticles,' Beilstein Journal of Nanotechnology, Vol. 1, No. 1, pp. 182-190, (2010).
[27] D. Walter, 'Primary particles–agglomerates–aggregates,' pp. 9-24, Chapter 1 of the book 'Nanomaterials,' edited by A. Hartwig, Wiley-VCH, Weinheim (2013).
[28] M. I. Shliomis, “Effective viscosity of magnetic suspensions,” Soviet Phys. JETP, Vol. 34, pp. 1291-1294 (1972).
[29] Zubarev, A. Y. and L. Y. Iskakova, “Theory of physical properties of magnetic liquids with chain aggregates,” Soviet Phys. JETP, Vol. 80, pp. 857-866 (1995).
[30] J. S. Taurozzi, V. A. Hackley, and M. R. Wiesner, 'Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment–issues and recommendations,' Nanotoxicology, Vol. 5, No. 4, pp. 711-729, (2011).
[31] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, and X. Deng, 'Synthesis of Fe3O4 nanoparticles and their magnetic properties,' Procedia Engineering, Vol. 27, pp. 632 – 637 (2012).
[32] Massart, 'Preparation of aqueous magnetic liquids in alkaline and acidic media,' Vol. 17, No. 2, pp. 1247-1248, (1981).
[33] M. Mahdavi, M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. A. Rahman and J.Amin, 'Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications,' Molecules, Vol. 18, No. 7, pp. 7533-7548, (2013).
[34] M. C. Mascolo, Y. B. Pei, and T. A. Ring, 'Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases ' Materials (Basel), Vol. 6, No. 12, pp. 5549-5567, (2013).
[35] L. Zhang, R. He, and H.-C. J. A. S. S. Gu, 'Oleic acid coating on the monodisperse magnetite nanoparticles,' Surface Science, Vol. 253, No. 5, pp. 2611-2617, (2006).
[36] H. Bruus. 'Theoretical Microfluidics,' Oxford University Press, (2008).
[37] 呂昆其, '磁性奈米流體中粒徑分佈與磁黏效應的關係,' 臺灣大學應用力學研究所學位論文(2020).
[38] F. Babick, J. M. V. Millán, Ed. Suspensions of Colloidal Particles and Aggregaties. Springer International Publishing, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51198-
dc.description.abstract本文設計並製造一項狹縫式黏度計,可成功地用於研究低黏度(1 cP量階)磁性奈米流體的磁黏效應,並以“四氧化三鐵-煤油”奈米流體進行實驗加以佐證。就煤油及奈米流體,此狹縫式黏度計所量測結果與商用轉子式黏度計所量結果相符。
主要成果如下:(i)本狹縫式黏度計其量測原理按矩形截面直管內全展流之分析解,在壓克力板上以精密加工製作出流道。操作時以定流量幫浦驅動,以毛細管液柱高度差量測壓力降,進而推算出黏度。在施加磁場方面,採用兩片永久磁鐵置於流道外上下或左右以產生垂直或平行於流場渦度的磁場,並藉調整磁鐵間距離以產生不同的磁場強度。(ii)以化學共沉澱法製造四氧化三鐵奈米粒子,並以油酸包覆,再分散至煤油中,以合成穩定的“四氧化三鐵-煤油”奈米流體。其中粒子單體粒徑約9 nm,粒子懸浮在煤油中的平均粒徑約30 nm。(iii)以磁化儀量測不同體積百分率(1 – 4%)奈米流體,在不同磁場強度(200 – 500 Gauss)下所相對應的磁化強度。其磁化強度隨磁場強度與體積百分率上升而上升。(iv)在磁黏效應方面,就不同體積百分率(1 – 4%)、磁場方向、磁場強度(200 – 500 Gauss)、流場剪變率(70 – 189 s-1)、流道截面寬高比(8或12)、及流體合成後的量測時間點等均進行了量測,所獲結果如下:(1)磁黏效應隨體積百分率及磁場強度增加而增加。在剪變率70 s1、體積百分率4%、磁場方向垂直於流場渦度、及磁場強度500 Gauss (中低強度磁場)下,因磁場效應引致之黏度增益約68%。(2)磁場方向垂直於流場渦度時黏度增益為磁場方向平行於流場渦度時的3 4倍。(3)剪切稀化效應明顯,黏度增益的降幅隨體積百分率及剪變率之增加而增加。就體積百分率4%之奈米流體,當磁場方向垂直於流場渦度時,其黏度增益因剪切稀化效應從剪應變率70 s1的59%降為剪應變率189 s1的33%。(4)在流體合成三週後黏度增益約有六成的降幅,顯示流體有一定程度的老化現象且流體在經過三週後達至穩態。(5)流道截面之寬高比對磁黏效應與剪切稀化效應影響不大。
zh_TW
dc.description.abstractA slit viscometer was designed and fabricated, which could be applied for studying the magneto-viscosity of low viscosity (about 1 cP) magnetic nanofluids. The validity of the measurement using the slit viscometer was checked against measurement using a commercial Brookfield viscometer with kerosene and Fe3O4-Kerosene nanofluids.
The main findings are as follows. (i)The theory of the slit viscometer is based on the analytical solution of the steady fully-developed flow in a square straight channel. The channel was fabricated on an acrylic sheet using precision machining. The test fluid was pumped through the channel using a syringe pump. The viscosity was accessed through the pressure drop in the channel measured via a manometer. The magnetic field was applied through two permanent magnet plates sandwiching the channel from the top and bottom wall (for generating field perpendicular to the flow vorticity) or from both side walls (for generating field parallel to the flow vorticity); and the field strength was adjusted by varying the distance between those two magnets. (ii) Fe3O4 nano particles were generated using chemical co-precipitation method, coated with oleic acid, and then dispersed into kerosene for synthesizing stable nanofluids. The average diameter of the particle monomer was measured as 9 nm, and the average diameter of the suspended particles in nanofluid is 30 nm. (iii) Magnetization curves of nanofluids at different volume fractions (1 – 4%) were measured, and it was found the magnetization increases as both the volume fraction and the magnetic field strength increase. (iv)As for the magneto-viscosity, we have performed measurements using different volume fractions (1 – 4%), magnetic field directions, magnetic field strengths (200 – 500 Gauss), shear rates (70 – 189 s-1), aspect ratio of the channel (8 or 12)、and the times for measurement after the fluids were synthesized. We found: (1) Viscosity enhancement increases as both the volume fraction and the magnetic field strength were increased. For example, the viscosity increase was 68% for a shear rate 70 s1, a volume fraction 4%、and moderate field strength 500 Gauss applied perpendicular to the flow vorticity. (2) The viscosity increase when the magnetic field is perpendicular to the flow vorticity is about 3 – 4 times greater than that when the field is parallel to flow vorticity. (3) Shear thinning is obvious; the reduction of the viscosity increase increases as both the volume fraction and shear rate increase. For example, the 59% viscosity increase at a shear rate 70 s1 is reduced to 33% at 190 s1 for a fluid with volume fraction 4% under a field applied perpendicular to the vorticity at 500 Gauss. (4) Viscosity increase was reduced by about 60% and would be stable three weeks later after the fluid has been synthesized. (5) Effect of aspect ratio of the channel on magneto-viscosity and shear thinning are minor.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:27:16Z (GMT). No. of bitstreams: 1
U0001-1008202014303700.pdf: 4066199 bytes, checksum: 2e7fc71b91723fd8582cb4a3069fb9c2 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.3研究動機 5
第二章 原理 7
2.1黏度計 7
2.1.1旋轉式黏度計 8
2.1.2狹縫式黏度計 11
2.2粒子與基底流體之間的作用力 14
2.3粒子與粒子間之交互作用 17
2.3.1凡德瓦力 18
2.3.2磁性粒子間交互作用 23
2.4粒子的凝聚與聚結 24
2.5磁黏效應 25
2.6超音波振洗 27
2.7粒子化驗檢測 28
2.7.1動態光散射(DLS) 28
2.7.2 X光繞射分析(XRD) 30
2.7.3掃描式電子顯微鏡分析(SEM) 31
第三章 實驗方法與步驟 34
3.1流體配製 34
3.1.1化學沉澱法 35
3.1.2基底流體 38
3.1.3體積百分率 39
3.2流體中粒子粒徑的檢測分析 39
3.3流道設計與製作 40
3.3.1截面設計 41
3.3.2量測點之間距 42
3.3.3流道製作 45
3.4旋轉黏度計與狹縫式黏度計對比 48
3.5外加磁場 48
3.6磁場方向與黏度的變化 51
3.7剪應力與磁效應之交互作用 51
3.8老化現象 52
3.9狹縫黏度計流道之邊界效應 52
第四章 實驗結果與討論 53
4.1粒子檢測 53
4.2磁化曲線 59
4.3狹縫黏度計與旋轉黏度計的量測比較 60
4.4磁方向與黏度變化 63
4.5剪應力效應與磁效應相互作用的結果 66
4.6老化效應 70
4.6.1磁黏增益效應 70
4.6.2剪切稀化效應 71
4.7流道寬高比效應 74
4.7.1磁黏增益效應 74
4.7.2剪切稀化效應 76
第五章 結論與展望 78
5.1結論 78
5.2展望 80
參考文獻 81
dc.language.isozh-TW
dc.subject狹縫式黏度計zh_TW
dc.subject磁性奈米流體zh_TW
dc.subject剪切稀化zh_TW
dc.subject剪切稀化zh_TW
dc.subject磁黏效應zh_TW
dc.subject磁黏效應zh_TW
dc.subject狹縫式黏度計zh_TW
dc.subject磁性奈米流體zh_TW
dc.subjectShear thinningen
dc.subjectShear thinningen
dc.subjectMagneto-viscosityen
dc.subjectSlit viscometeren
dc.subjectMagnetic nanofluiden
dc.subjectMagnetic nanofluiden
dc.subjectSlit viscometeren
dc.subjectMagneto-viscosityen
dc.title以煤油為基底磁性奈米流體磁黏效應的實驗探討zh_TW
dc.titleExperimental Study of the Magnetoviscosity of Kerosene-Based Magnetic Nanofluidsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈弘俊(Horn-Jiunn Sheen),王安邦(An-Bang Wang)
dc.subject.keyword磁性奈米流體,狹縫式黏度計,磁黏效應,剪切稀化,zh_TW
dc.subject.keywordMagnetic nanofluid,Slit viscometer,Magneto-viscosity,Shear thinning,en
dc.relation.page84
dc.identifier.doi10.6342/NTU202002804
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202014303700.pdf
  未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved