請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51195完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王陸海(Lu-Hai Wang) | |
| dc.contributor.author | Jo-Ting Huang | en |
| dc.contributor.author | 黃若婷 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:27:11Z | - |
| dc.date.available | 2016-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-16 | |
| dc.identifier.citation | Abate-Shen, C., and Shen, M.M. (2000). Molecular genetics of prostate cancer. Genes & Development 14, 2410-2434.
Gilmore, T.D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684. Gong, Y., Chippada-Venkata, U.D., and Oh, W.K. (2014). Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Prostate Cancer Progression. Cancers 6, 1298-1327. Granet, C., Maslinski, W., and Miossec, P. (2004). Increased AP-1 and NF-κB activation and recruitment with the combination of the proinflammatory cytokines IL-1β, tumor necrosis factor alpha and IL-17 in rheumatoid synoviocytes. Arthritis Research & Therapy 6, R190-R198. Gupta, G.P., and Massagué, J. (2006). Cancer Metastasis: Building a Framework. Cell 127, 679-695. Hart, I.R., and Fidler, I.J. (1980). Cancer invasion and metastasis. The Quarterly review of biology 55, 121-142. Hayakawa, K., Arai, K., and Lo, E.H. (2010). Role of ERK MAP kinase and CRM1 in IL-1b-stimulated release of HMGB1 from cortical astrocytes. Glia 58, 10.1002/glia.20982. Jung, K., Nowak, L., Lein, M., Priem, F., Schnorr, D., and Loening, S.A. (1997). Matrix metalloproteinases 1 and 3, tissue inhibitor of metalloproteinase-1 and the complex of metalloproteinase-1/tissue inhibitor in plasma of patients with prostate cancer. International Journal of Cancer 74, 220-223. Karin, M. (2006). NF-kappaB and cancer: mechanisms and targets. Molecular carcinogenesis 45, 355-361. Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annual review of immunology 18, 621-663. Li, L., Rose, P., and Moore, P.K. (2011). Hydrogen sulfide and cell signaling. Annual review of pharmacology and toxicology 51, 169-187. Lin, K.T., Gong, J., Li, C.F., Jang, T.H., Chen, W.L., Chen, H.J., and Wang, L.H. (2012). Vav3-rac1 signaling regulates prostate cancer metastasis with elevated Vav3 expression correlating with prostate cancer progression and posttreatment recurrence. Cancer research 72, 3000-3009. Mehlen, P., and Puisieux, A. (2006). Metastasis: a question of life or death. Nat Rev Cancer 6, 449-458. Mustafa, A.K., Gadalla, M.M., Sen, N., Kim, S., Mu, W., Gazi, S.K., Barrow, R.K., Yang, G., Wang, R., and Snyder, S.H. (2009). H(2)S Signals Through Protein S-Sulfhydration. Science signaling 2, ra72-ra72. Papapetropoulos, A., Pyriochou, A., Altaany, Z., Yang, G., Marazioti, A., Zhou, Z., Jeschke, M.G., Branski, L.K., Herndon, D.N., Wang, R., et al. (2009). Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proceedings of the National Academy of Sciences 106, 21972-21977. Paul, B.D., and Snyder, S.H. (2015). H2S: A Novel Gasotransmitter that Signals by Sulfhydration. Trends in Biochemical Sciences 40, 687-700. Risbud, M.V., and Shapiro, I.M. (2014). Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 10, 44-56. Roos, W.P., Thomas, A.D., and Kaina, B. (2016). DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16, 20-33. Sen, N., Paul, B.D., Gadalla, M.M., Mustafa, A.K., Sen, T., Xu, R., Kim, S., and Snyder, S.H. (2012a). Hydrogen sulfide-linked sulfhydration of NF-κB mediates its anti-apoptotic actions. Molecular Cell 45, 13-24. Sen, N., Paul, Bindu D., Gadalla, Moataz M., Mustafa, Asif K., Sen, T., Xu, R., Kim, S., and Snyder, Solomon H. (2012b). Hydrogen Sulfide-Linked Sulfhydration of NF-κB Mediates Its Antiapoptotic Actions. Molecular Cell 45, 13-24. Shen, M.M., and Abate-Shen, C. (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes & Development 24, 1967-2000. Singh, S., and Banerjee, R. (2011). PLP-dependent H(2)S Biogenesis(). Biochimica et biophysica acta 1814, 1518-1527. Sun, Y., and Peng, Z.L. (2009). Programmed cell death and cancer. Postgraduate medical journal 85, 134-140. Szabo, C. (2007). Hydrogen sulphide and its therapeutic potential. Nature reviews Drug discovery 6, 917-935. Tabruyn, S.P., and Griffioen, A.W. (2007). A new role for NF-[kappa]B in angiogenesis inhibition. Cell Death Differ 14, 1393-1397. Wang, R. (2002). Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB journal : official publication of the Federation of American Societies for Experimental Biology 16, 1792-1798. Weber, A., Wasiliew, P., and Kracht, M. (2010). Interleukin-1 (IL-1) Pathway. Science Signaling 3, cm1-cm1. Wirtz, D., Konstantopoulos, K., and Searson, P.C. (2011). The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer 11, 512-522. Wu, Y., and Zhou, B.P. (2010). TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. British Journal of Cancer 102, 639-644. Youssoufian, H., and Pyeritz, R.E. (2002). Mechanisms and consequences of somatic mosaicism in humans. Nature reviews Genetics 3, 748-758. Zhao, W., Zhang, J., Lu, Y., and Wang, R. (2001). The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. The EMBO Journal 20, 6008-6016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51195 | - |
| dc.description.abstract | 在男性中前列腺癌的發生率列居前位,並且死亡率也位居第二高。前列腺癌早期通常生長緩慢而且沒有任何症狀,一旦病人發現症狀就醫,癌細胞經常已經轉移到身體其他部位,尤其以骨骼最為常見。有骨轉移時會引起骨骼疼痛,甚至造成死亡,因此研究前列腺癌的轉移機制以找出可做為潛力藥物為本研究之主要目標。此研究為探討代謝酵素¬¬–cystathionine gamma-lyase (CTH)在前列腺癌中所扮演的角色。比較前列腺原位癌細胞和骨轉移癌細胞後發現,CTH在骨轉移的癌細胞中的表現量遠高於原位癌細胞,而且具有促進細胞移動、入侵、血管新生等能力。CTH在催化胺基酸代謝時會產生硫化氫(H2S),而此氣體已經被發現為一種氣體傳導物質。H2S可以透過對蛋白質硫基化修飾來調控NF-κB的蛋白活性。此外,CTH也會促進IL-1β在細胞中的表現量,進而誘導NF-κB磷酸化並入核改變下游基因之表達。數據證實CTH可藉由H2S和IL-1β提升癌細胞入侵的能力和促進內皮產生血管新生,因此推測前列腺癌所表現的CTH可以調控H2S和IL-1β進而活化NF-κB路徑,因而促使癌細胞之轉移。 | zh_TW |
| dc.description.abstract | Prostate cancer is one of the most common cancers and the second leading cause of death from cancer in men. Metastatic prostate cancer most commonly spreads to the bones and lymph nodes. Bone metastasis is painful and has no cure. Thus, the main goal of this study is to identify potential drug targets in treating prostate cancer bone metastasis. In this study, the role of a metabolic enzyme, cystathionine gamma-lyase (CTH), was investigated. We found that CTH was up-regulated in bone-metastatic prostate cancer cells, and it positively regulated cell migration, cell invasion and angiogenesis. CTH enhanced expression of IL-1β, resulting in increased phosphorylation of p65 subunit of NF-κB. p65 nuclear translocation was promoted by CTH through H2S and/or IL-1β. Treatment of H2S or IL-1β increased cell invasion and angiogenesis. Collectively, our data suggests that CTH likely plays an important role in promoting prostate cancer cell invasion and metastasis through production of H2S and IL-1β. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:27:11Z (GMT). No. of bitstreams: 1 ntu-105-R02b43026-1.pdf: 1948699 bytes, checksum: 9f26130df08798544c1f6c8e1c1d68e2 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Table of Contents iv List of Figures vi 1 Chapter 1: Introduction 1 2 Chapter 2: Material and Methods 7 2.1 Cell lines 7 2.2 Transient cell transfection 7 2.3 Cell migration and invasion assay 7 2.4 MTS proliferation assay 8 2.5 Anchorage independent cell growth 8 2.6 Capillary tube formation in Matrigel 9 2.7 Protein extraction 9 2.8 Western blot analysis 10 2.9 RNA extraction and real-time reverse transcriptase PCR 11 3 Chapter 3: Result 12 3.1 Comparison of different characteristics between T and B lines 12 3.2 The role of CTH in cell migration, invasion, and angiogenesis 13 3.3 The generation of hydrogen sulfide by CTH affects cell invasion 14 3.4 The regulation of NF-κB nuclear translocation by CTH 14 3.5 CTH upregulates IL-1β to enhance cell invasion and angiogenesis through activation of NF-κB 15 4 Chapter 4: Discussion 17 5 Reference 21 6 Figures 24 | |
| dc.language.iso | en | |
| dc.subject | 骨轉移 | zh_TW |
| dc.subject | 前列腺癌 | zh_TW |
| dc.subject | 前列腺癌 | zh_TW |
| dc.subject | 骨轉移 | zh_TW |
| dc.subject | CTH | en |
| dc.subject | cystathionine gamma-lyase | en |
| dc.subject | prostate cancer | en |
| dc.subject | interleukin-1 beta | en |
| dc.subject | hydrogen sulfide | en |
| dc.subject | interleukin-1 beta | en |
| dc.subject | hydrogen sulfide | en |
| dc.subject | CTH | en |
| dc.subject | prostate cancer | en |
| dc.subject | cystathionine gamma-lyase | en |
| dc.title | Cystathionine gamma-lyase在前列腺癌轉移中的角色 | zh_TW |
| dc.title | The role of cystathionine gama-lyase in prostate cancer metastasis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 阮雪芬(Hsueh-Feng Juan),劉俊揚(Jun-Yang Liou),徐欣伶(Hsin-Ling Hsu) | |
| dc.subject.keyword | 前列腺癌,骨轉移, | zh_TW |
| dc.subject.keyword | prostate cancer,cystathionine gamma-lyase,CTH,hydrogen sulfide,interleukin-1 beta, | en |
| dc.relation.page | 39 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
