請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51192
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 余明俊(Ming-Jiun Yu) | |
dc.contributor.author | Yin-Fang Su | en |
dc.contributor.author | 蘇盈方 | zh_TW |
dc.date.accessioned | 2021-06-15T13:27:07Z | - |
dc.date.available | 2026-12-31 | |
dc.date.copyright | 2016-02-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-17 | |
dc.identifier.citation | 1. Ikeda, M. and T. Matsuzaki, Regulation of aquaporins by vasopressin in the kidney. Vitam Horm, 2015. 98: p. 307-37.
2. Baylis, P.H., Osmoregulation and control of vasopressin secretion in healthy humans. Am J Physiol, 1987. 253(5 Pt 2): p. R671-8. 3. Robben, J.H., N.V. Knoers, and P.M. Deen, Regulation of the vasopressin V2 receptor by vasopressin in polarized renal collecting duct cells. Mol Biol Cell, 2004. 15(12): p. 5693-9. 4. Umenishi, F., et al., cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway. Biochim Biophys Acta, 2006. 1758(8): p. 1100-5. 5. Eto, K., et al., Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem, 2010. 285(52): p. 40777-84. 6. Christensen, B.M., et al., Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol, 2000. 278(1): p. F29-42. 7. Hasler, U., et al., Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem, 2002. 277(12): p. 10379-86. 8. Yasui, M., et al., Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol, 1997. 272(4 Pt 2): p. F443-50. 9. Yu, M.J., et al., Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proc Natl Acad Sci U S A, 2009. 106(7): p. 2441-6. 10. Uchida, S., et al., Regulation of aquaporin-2 gene transcription by GATA-3. off. Biochem Biophys Res Commun, 1997. 232(1): p. 65-8. 11. Yu, L., et al., GATA2 regulates body water homeostasis through maintaining aquaporin 2 expression in renal collecting ducts. Mol Cell Biol, 2014. 34(11): p. 1929-41. 12. Hasler, U., et al., Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells. J Am Soc Nephrol, 2006. 17(6): p. 1521-31. 13. Bolger, S.J., et al., Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells. Am J Physiol Cell Physiol, 2012. 303(10): p. C1006-20. 14. Schenk, L.K., et al., Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells. Journal of the American Society of Nephrology, 2012. 23(6): p. 1008-1018. 15. Brembeck, F.H., et al., Dual function of the epithelial specific ets transcription factor, ELF3, in modulating differentiation. Oncogene, 2000. 19(15): p. 1941-9. 16. Kar, A. and A. Gutierrez-Hartmann, Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Critical Reviews in Biochemistry and Molecular Biology, 2013. 48(6): p. 522-543. 17. Kopp, J.L., et al., Different domains of the transcription factor ELF3 are required in a promoter-specific manner and multiple domains control its binding to DNA. J Biol Chem, 2007. 282(5): p. 3027-41. 18. Frokiaer, J., et al., Pathophysiology of aquaporin-2 in water balance disorders. Am J Med Sci, 1998. 316(5): p. 291-9. 19. Timmer, R.T. and J.M. Sands, Lithium intoxication. J Am Soc Nephrol, 1999. 10(3): p. 666-74. 20. Hensen, J., M. Haenelt, and P. Gross, Lithium induced polyuria and renal vasopressin receptor density. Nephrol Dial Transplant, 1996. 11(4): p. 622-7. 21. Li, Y., et al., Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol, 2006. 17(4): p. 1063-72. 22. Marples, D., et al., Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest, 1995. 95(4): p. 1838-45. 23. Goldberg, H., P. Clayman, and K. Skorecki, Mechanism of Li inhibition of vasopressin-sensitive adenylate cyclase in cultured renal epithelial cells. Am J Physiol, 1988. 255(5 Pt 2): p. F995-1002. 24. Nielsen, J., et al., Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci U S A, 2008. 105(9): p. 3634-9. 25. Klein, J.D., et al., Down-regulation of urea transporters in the renal inner medulla of lithium-fed rats. Kidney Int, 2002. 61(3): p. 995-1002. 26. Rao, R., et al., Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol, 2005. 288(4): p. F642-9. 27. Kortenoeven, M.L.A., et al., Lithium reduces aquaporin-2 transcription independent of prostaglandins. AJP: Cell Physiology, 2011. 302(1): p. C131-C140. 28. Rao, R., Glycogen synthase kinase-3 regulation of urinary concentrating ability. Curr Opin Nephrol Hypertens, 2012. 21(5): p. 541-6. 29. Rao, R., et al., GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol, 2010. 21(3): p. 428-37. 30. Kirshenboim, N., et al., Lithium-mediated phosphorylation of glycogen synthase kinase-3beta involves PI3 kinase-dependent activation of protein kinase C-alpha. J Mol Neurosci, 2004. 24(2): p. 237-45. 31. Hou, J., et al., Transcriptional regulation of the murine Elf3 gene in embryonal carcinoma cells and their differentiated counterparts: requirement for a novel upstream regulatory region. Gene, 2004. 340(1): p. 123-31. 32. Scott, M.L., et al., The p65 subunit of NF-kappa B regulates I kappa B by two distinct mechanisms. Genes Dev, 1993. 7(7a): p. 1266-76. 33. Wilson, W., 3rd and A.S. Baldwin, Maintenance of constitutive IkappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer. Cancer Res, 2008. 68(19): p. 8156-63. 34. Trepiccione, F., et al., Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2. Kidney Int, 2014. 86(4): p. 757-67. 35. O'Brien, W.T. and P.S. Klein, Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans, 2009. 37(Pt 5): p. 1133-8. 36. Hoesel, B. and J.A. Schmid, The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer, 2013. 12: p. 86. 37. Nielsen, S., et al., Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A, 1993. 90(24): p. 11663-7. 38. Nielsen, S., et al., Aquaporins in the kidney: from molecules to medicine. Physiol Rev, 2002. 82(1): p. 205-44. 39. Nielsen, S., et al., Key Roles of Renal Aquaporins in Water Balance and Water-Balance Disorders. News Physiol Sci, 2000. 15: p. 136-143. 40. Nielsen, S., et al., Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A, 1995. 92(4): p. 1013-7. 41. Wesche, D., P.M. Deen, and N.V. Knoers, Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr Nephrol, 2012. 27(12): p. 2183-204. 42. Moeller, H.B., S. Rittig, and R.A. Fenton, Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev, 2013. 34(2): p. 278-301. 43. Hochberg, Z., et al., Autosomal recessive nephrogenic diabetes insipidus caused by an aquaporin-2 mutation. J Clin Endocrinol Metab, 1997. 82(2): p. 686-9. 44. Kamsteeg, E.J., et al., Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol, 2003. 163(5): p. 1099-109. 45. Pufall, M.A. and B.J. Graves, Autoinhibitory domains: modular effectors of cellular regulation. Annu Rev Cell Dev Biol, 2002. 18: p. 421-62. 46. Do, H.J., et al., Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor. FEBS Lett, 2006. 580(7): p. 1865-71. 47. Manavathi, B., S.K. Rayala, and R. Kumar, Phosphorylation-dependent regulation of stability and transforming potential of ETS transcriptional factor ESE-1 by p21-activated kinase 1. J Biol Chem, 2007. 282(27): p. 19820-30. 48. Moeller, H.B., et al., Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc Natl Acad Sci U S A, 2010. 107(1): p. 424-9. 49. Hasler, U., et al., NF-kappaB modulates aquaporin-2 transcription in renal collecting duct principal cells. J Biol Chem, 2008. 283(42): p. 28095-105. 50. O'Dea, E. and A. Hoffmann, The regulatory logic of the NF-kappaB signaling system. Cold Spring Harb Perspect Biol, 2010. 2(1): p. a000216. 51. Oeckinghaus, A. and S. Ghosh, The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol, 2009. 1(4): p. a000034. 52. Huxford, T. and G. Ghosh, A structural guide to proteins of the NF-kappaB signaling module. Cold Spring Harb Perspect Biol, 2009. 1(3): p. a000075. 53. Smale, S.T., Dimer-specific regulatory mechanisms within the NF-kappaB family of transcription factors. Immunol Rev, 2012. 246(1): p. 193-204. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51192 | - |
dc.description.abstract | 抗利尿激素(vasopressin(AVP))是一種多胜肽賀爾蒙,當其從腦下垂體釋放跟著血流來到腎臟,會增加集尿管細胞對水的通透性,增加水分再吸收回體內,而降低水份從尿液中排除。AVP調整細胞對水的通透性,主要透過短期的調控水通道蛋白質2號(aquaporin-2(AQP2))的運輸,和長期的調控AQP2的基因表現。當AVP無法正常誘導AQP2基因表現時,會造成一些與水分平衡失調有關的疾病,其中包括鋰鹽誘導的腎源性尿崩症(lithium-induced nephrogenic diabetes insipidus),但其分子機制尚未明瞭。先前實驗室發現一個轉錄因子Elf3參與在AVP所誘導的AQP2基因表現的機制當中。我的研究目標是鋰鹽是否透過減少Elf3 mRNA的表現量而導致AQP2的表現量下降。免疫螢光染色的結果顯示,在AVP類似物dDAVP的刺激下,會促進帶有V5-tag的Elf3進到細胞核內。在即時聚合酶連鎖反應的分析下,40mM的鋰鹽會造成Elf3的mRNA減少並伴隨著減少AQP2的mRNA,而且不影響細胞生存。在西方點墨法中也發現40mM的鋰鹽會使AQP2 protein表現量減少,而上述的影響並非鋰鹽的滲透壓所導致,因為使用相同滲透壓的鈉鹽並沒有產生相同的結果。這些實驗表示鋰鹽抑制AVP所誘導的AQP2基因表現可能是透過降低Elf3的mRNA所導致。在分子機制方面,我們發現鋰鹽會增加醣原合成激酶(glycogen synthase kinase 3β(GSK3β))上絲氨酸9號(serine 9)的磷酸化,而抑制GSK3β。GSK3β的下游目標之一是nuclear factor-κB (NF-κB),且NF-κB在Elf3的啟動子區有結合位。因此,鋰鹽可能透過影響NF-κB而減少Elf3轉錄。然而,knockdown NF-κB並沒有影響到Elf3 mRNA表現量,這表示鋰鹽降低Elf3 mRNA可能不是藉由NF-κB調控。有趣的是knockdown NF-κB卻顯著地降低AVP所誘導的AQP2表現。我們的結論是鋰鹽誘導的尿崩症可能是透過降低Elf3轉錄而減少Elf3所調控的AQP2基因表現所致。另外,NF-κB可能在AQP2基因表現上有直接的調控作用。 | zh_TW |
dc.description.abstract | Vasopressin (AVP) is an antidiuretic peptide hormone that is released from the pituitary and circulates to the kidneys where it increases water permeability of the collecting ducts and reduces water excretion. AVP regulates the water permeability via short term regulation of aquaporin-2 (AQP2) trafficking and long term regulation of AQP2 gene expression. Dysregulation of vasopressin-mediated long term AQP2 gene expression is associated with many water balance diseases including lithium-induced nephrogenic diabetes insipidus; however, the molecular mechanism of the pathogenesis remains unclear. Previously, our laboratory found that the transcription factor Elf3 mediates vasopressin-induced AQP2 gene expression. The aim of my study is to investigate whether lithium down-regulates vasopressin-induced AQP2 gene expression via affecting the expression of Elf3 that has a binding site in the AQP2 promoter region. Immunofluorescence staining showed that the vasopressin analog dDAVP stimulated V5-tagged Elf3 translocation into the nucleus of the collecting duct cell model mpkCCD. Quantitative RT-PCR analysis showed that 40mM lithium treatment was enough to decrease Elf3 mRNA and vasopressin-induced increases in the AQP2 mRNA level in the mpkCCD cells without affecting cell viability measured with the MTT assay. Immunoblotting showed that 40mM lithium reduced vasopressin-induced increases in the AQP2 protein levels. The above effects were not results of the lithium tonicity because sodium at the same tonicity did not produce the same results. These data suggest that lithium suppresses vasopressin-induced AQP2 gene expression via reducing Elf3 mRNA. To investigate the molecular mechanism involved, we found that lithium increased phosphorylation at serine 9 of glycogen synthase kinase 3β (GSK3β), a well-known target of lithium. One of the downstream targets of GSK3β is nuclear factor-κB (NF-κB) that has a binding site on the Elf3 promoter region. This led to the hypothesis that lithium could potentially affect NF-κB to reduce Elf3 transcription. However, NF-κB knockdown did not affect the Elf3 mRNA levels, suggesting that the lithium-induced decrease in the Elf3 mRNA level is probably not mediated by NF-κB. One interesting finding was that NF-κB knockdown significantly reduced vasopressin-induced increased in the AQP2 mRNA levels. In summary, we conclude that lithium-induced diabetes insipidus is probably due to a reduced transactivation activity of Elf3 that mediates vasopressin-induced AQP2 gene expression and that NF-κB probably plays a direct role in vasopressin-induced AQP2 gene expression. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:27:07Z (GMT). No. of bitstreams: 1 ntu-105-R02442024-1.pdf: 2150513 bytes, checksum: 90acb77c8e941b954c70bb9d7f6a7e43 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝------------------------------------------------------------------------------------I
中文摘要-----------------------------------------------------------------------------II Abstract ------------------------------------------------------------------------III、IV 1. Introduction---------------------------------------------------------------------01 2. Materials------------------------------------------------------------------------06 3. Methods-------------------------------------------------------------------------13 4. Results---------------------------------------------------------------------------27 The vasopressin analog dDAVP stimulated V5-tagged Elf3 translocation into the nucleus-------------------------------------------------28 Lithium reduced Elf3 and AQP2 mRNA levels in the mpkCCD cells in a dose- and time- dependent manner--------------------------------------29 Lithium did not affect cell viability and polarity---------------------------30 Lithium reduced AQP2 protein levels in the mpkCCD cells in the presence of dDAVP-----------------------------------------------------31 Lithium antagonized vasopressin-induced GSK3β dephosphorylation and activation-------------------------------------------------------------------32 NF-κB knockdown decreased AQP2 mRNA levels in the presence of dDAVP but did not affect Elf3 mRNA levels----------------------------33 5. Figures and Legends-----------------------------------------------------------34 6. Discussion-----------------------------------------------------------------------42 7. References-----------------------------------------------------------------------49 | |
dc.language.iso | en | |
dc.title | 鋰鹽藉減少轉錄因子Elf3 mRNA降低第二型水通道蛋白質的表現 | zh_TW |
dc.title | Lithium down-regulates aquaporin-2 gene expression via reducing transcription factor Elf3 mRNA in the mpkCCD cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂紹俊(Shao-Chun Lu),林水龍(Shuei-Liong Lin) | |
dc.subject.keyword | 鋰鹽,抗利尿激素,水通道蛋白質,轉錄因子, | zh_TW |
dc.subject.keyword | lithium,AVP,AQP2,Elf3,GSK3β,NF-κB, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-02-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。