Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51172
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新
dc.contributor.authorCheng-Yen Hsuen
dc.contributor.author許正衍zh_TW
dc.date.accessioned2021-06-15T13:26:41Z-
dc.date.available2017-08-02
dc.date.copyright2016-08-02
dc.date.issued2015
dc.date.submitted2016-03-10
dc.identifier.citationREFERENCES
[1] J. Davidovits, Geopolymer Chemistry & Application, Geopolymer Institute, Saint-Quentin (2008).
[2] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo and J. S. J. van Deventer, “Geopolymer Technology: the Current State of the Art”, J. Mater. Sci., 42 2917-2933 (2007).
[3] T. W. Cheng, “Development and Application of Geopolymer Technology: A Review”, Mining & Metallurgy, 54 [1] 141-157 (2010).
[4] C. Y. Heah, H. Kamarudin, A. M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar and Y. M. Liew, “Potential Application of Kaolin without Calcine as Greener Concrete: A Review”, Aust. J. Basic & Appl. Sci., 5 [7] 1026-1035 (2011).
[5] F. Pacheco-Torgal, J. Castro-Gomes and S. Jalali, “Alkali-Activated Binders: A Review: Part 1. Historical Background, Terminology, Reaction Mechanisms and Hydration Products”, Constr. Build. Mater., 22 1305-1314 (2008).
[6] F. Pacheco-Torgal, J. Castro-Gomes and S. Jalali, “Alkali-Activated Binders: A Review: Part 2. About Materials and Binders Manufacture”, Constr. Build. Mater., 22 1315-1322 (2008).
[7] A. O. Purdon, “The Action of Alkalis on Blast Furnace Slag”, J. Soc. Chem. Ind., 59 191-202 (1940).
[8] V. D. Glukhovsky, Soil Silicates, Gosstroyizdat Publish, Kiev (1959).
[9] D. H. Campbell and R. L. Folk, “The Ancient Egyptian Pyramids-Concrete or Rock”, Concr. Int., 29-44 (1991).
[10] J. Davidovits, “Synthesis of New High Temperature Geo-Polymers for Reinforced Plastics/Composites”, SPE PACTEC 79, Society of Plastic Engineers, Brookfield Center, 151-154 (1979).
[11] H. Xu and J. S. J. van Deventer, “The Geopolymerisation of Alumino-Silicate Minerals”, Int. J. Miner. Process, 59 247-266 (2000).
[12] K. Ikeda, T. Nunohiro and N. Iizuka, “Consolidation of Silica Sand Slime with a Geopolymer Binder at Room Temperature and the Strength of the Monoliths”, Chem. Papers, 52 [4] 214-217 (1998).
[13] D. G. Cao, D. G. Su, Z. Y. Yang and G. S. Song, “Study of the Microstructure of Metakaolinite with IR, TG, SEM, XRD Methods”, Acta Mineralogica Sinica, 24 [4] 366-372 (2004).
[14] H. Xu, J. S. J. van Deventer and G. C. Lukey, “Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures”, Ind. Eng. Chem. Res., 40 [17] 3749-3756 (2001).
[15] D. Khale and R. Chaudhary, “Mechanism of Geopolymerization and Factors Influencing its Development: A Review”, J. Mater. Sci., 42 729-746 (2007).
[16] C. Y. Heah, H. Kamarudin, A. M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi and Y. M. Liew, “Study on Solids-to-Liquid and Alkaline Activator Ratios on Kaolin-Based Geopolymers”, Constr. Build. Mater., 35 912-922 (2012).
[17] W. Loewenstein, “The Distribution of Aluminum in the Tetrahedra of Silicates and Aluminates”, American Mineralogist, 39 92-96 (1954).
[18] D. Kolousek, J. Brus, M. Urbanova, J. Andertova, V. Hulinsky and J. Vorel, “Preparation, Structure and Hydrothermal Stability of Alternative (Sodium Silicate-Free) Geopolymers”, J. Mater. Sci., 42 9267-9275 (2007).
[19] J. C. Swanepoel and C. A. Strydom, “Utilisation of Fly Ash in a Geopolymeric Material”, Appl. Geochem., 17 1143-1148 (2002).
[20] P. Rovnaník, “Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-Based Geopolymer”, Constr. Build. Mater., 24 1176-1183 (2010).
[21] F. G. M. Aredes, T. M. B. Campos, J. P. B. Machado, K. K. Sakane, G. P. Thim and D. D. Brunelli, “Effect of Cure Temperature on the Formation of Metakaolinite-Based Geopolymer”, Ceram. Int., 41 7302-7311 (2015).
[22] J. Davidovits, “Properties of Geopolymer Cements”, Alkaline Cements and Concretes, 131-149 (1994).
[23] J. Davidovits, “Geopolymers”, J. Therm. Anal., 37 1633-1656 (1991).
[24] W. K. W. Lee and J. S. J. van Deventer, “Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates”, Langmuir, 19 8726-8734 (2003).
[25] B. A. Latella, D. S. Perera, T. R. Escott and D. J. Cassidy, “Adhesion of Glass to Steel Using a Geopolymer”, J. Mater. Sci., 41 1261-1264 (2006).
[26] S. De Barros, K. C. Gomes, J. R. De Souza, N. P. Barbosa and S. M. Torres, “Geopolymeric Adhesives for Aluminum Joints”, Mater. Sci. Forum, 643 143-146 (2010).
[27] J. Temuujin, W. Rickard, M. Lee and A. Van Riessen, “Preparation and Thermal Properties of Fire Resistant Metakaolin-Based Geopolymer-Type Coatings”, J. Non-Cryst. Solids, 357 1399-1404 (2011).
[28] Y. Zarina, A. M. Mustafa Al Bakri, H. Kamarudin, I. Khairul Nizar and A. R. Rafiza, “Reviews on the Geopolymer Materials for Coating Application”, Adv. Mat. Res., 626 958-962 (2013).
[29] S. L. Yong, D. W. Feng, G. C. Lukey and J. S. J. van Deventer, “Chemical Characterisation of the Steel-Geopolymeric Gel Interface”, Colloid Surface A, 302 411-423 (2007).
[30] J. Temuujin, A. Minjigmaa, W. Rickard, M. Lee, I. Willams and A. van Riessen, “Preparation of Metakaolin Based Geopolymer Coatings on Metal Substrates as Thermal Barriers”, Appl. Clay Sci., 46 265-270 (2009).
[31] A. G. Evans, M. Rühle, B. J. Dalgleish and P. G. Charalambides, “The Fracture Energy of Bimaterial Interfaces”, Metall. Trans. A, 21A 2419-2429 (1990).
[32] A. A. Volinsky, N. R. Moody and W. W. Gerberich, “Interfacial Toughness Measurements for Thin Films on Substrates”, Acta Mater., 50 441-466 (2002).
[33] M. Kern and V. P. Thompson, “Bonding to Glass Infiltrated Alumina Ceramic: Adhesive Methods and their Durability”, J. Prosthet. Dent., 73 240-249 (1995).
[34] J. F. Burgess, C. A. Neugebauer, G. Flanagan and R. E. Moore, “The Direct Bonding of Metals to Ceramics and Application in Electronics”, Electrocomp. Sci. Tech., 2 233-240 (1976).
[35] K. L. Mittal, Adhesion Measurement of Thin Films, Thick Films and Bulk Coatings, STP 640, American Society for Testing and Materials, Philadelphia (1978).
[36] K. L. Mittal, “Adhesion Measurement of Films and Coatings: A Commentary”, Adhesion Measurement of Films and Coatings, 1-13 (1995).
[37] R. H. Dauskardt, M. Lane, Q. Ma and N. Krishna, “Adhesion and Debonding of Multi-Layer Thin Film Structures”, Eng. Fract. Mech., 61 141-162 (1998).
[38] M. Lane, “Interface Fracture”, Annu. Rev. Mater. Res., 33 29-54 (2003).
[39] T. H. Ueng, S. J. Lyu, H. W. Chu, H. H. Lee and T. T. Wang, “Adhesion at Interface of Geopolymer and Cement Mortar under Compression: An Experimental Study”, Constr. Build. Mater., 35 204-210 (2012).
[40] P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces”, J. Appl. Mech., 56 77-81 (1989).
[41] B. Wang and T. Siegmund, “A Modified 4-Point Bend Delamination Test”, Microelectron. Eng., 85 477-485 (2008).
[42] C. H. Hsueh, W. H. Tuan and W. C. J. Wei, “Analyses of Steady-State Interface Fracture of Elastic Multilayered Beams under Four-Point Bending”, Scripta Mater., 60 [8] 721-724 (2009).
[43] J. P. Holman, Heat Transfer Tenth Edition, McGraw-Hill, New York (2010).
[44] Z. Zuhua, Y. Xiao, Z. Huajun and C. Yue, “Role of Water in the Synthesis of Calcined Kaolin-Based Geopolymer”, Appl. Clay Sci., 43 218-223 (2009).
[45] C. Y. Chen, G. S. Lan and W. H. Tuan, “Microstructural Evolution of Mullite during the Sintering of Kaolin Powder Compacts”, Ceram. Int., 26 715-720 (2000).
[46] G. W. Brindley and M. Nakahira, “The Kaolinite-Mullite Reaction Series: II, Metakaolin”, J. Am. Ceram. Soc., 42 314-318 (1959).
[47] J. J. Brown and A. M. Alper, “The Use of Phase Diagrams to Predict Alkali Oxide Corrosion of Ceramics”, Phase Diagrams in Advanced Ceramics, Academic Press, San Diego, 43-83 (1995).
[48] M. Criado, A. Fernández-Jiménez and A. Palomo, “Alkali Activation of Fly Ash: Effect of the SiO2/Na2O Ratio: Part I: FTIR Study”, Micropor. Mesopor. Mat., 106 180-191 (2007).
[49] W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity”, J. Appl. Phys., 32 1679-1684 (1961).
[50] R. D. Cowan, “Pulse Method of Measuring Thermal Diffusivity at High Temperatures”, J. Appl. Phys., 34 926-927 (1963).
[51] ASTM International, ASTM E1461-07: Standard Test Method for Thermal Diffusivity by the Flash Method, West Conshohocken, PA (2007).
[52] R. E. Lyon, P. N. Balaguru, A. Foden, U. Sorathia, J. Davidovits and M. Davidovics, “Fire-Resistant Aluminosilicate Composites”, Fire Mater., 21 67-73 (1997).
[53] P. Duxson, G. C. Lukey and J. S. J. van Deventer, “Physical Evolution of Na-Geopolymer Derived from Metakaolin up to 1000 °C”, J. Mater. Sci., 42 3044-3054 (2007).
[54] R. E. Honig, “Vapor Pressure Data for the More Common Elements”, RCA Rev., 18 [2] 195-204 (1957).
[55] H. Xu and J. S. J. van Deventer, “The Effect of Alkali Metals on the Formation of Geopolymeric Gels from Alkali-Feldspars”, Colloid Surface A, 216 27-44 (2003).
[56] X. Yang, P. Roonasi and A. Holmgren, “A Study of Sodium Silicate in Aqueous Solution and Sorbed by Synthetic Magnetite Using In Situ ATR-FTIR Spectroscopy”, J. Colloid Interf. Sci., 328 41-47 (2008).
[57] C. Kuenzel, L. M. Grover, L. Vandeperre, A. R. Boccaccini and C. R. Cheeseman, “Production of Nepheline/Quartz Ceramics from Geopolymer Mortars”, J. Eur. Ceram. Soc., 33 251-258 (2013).
[58] W. M. Kriven, J. L. Bell and M. Gordon, “Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites”, Ceram. Trans., 153 227-250 (2003).
[59] V. F. F. Barbosa and K. J. D. MacKenzie, “Thermal Behaviour of Inorganic Geopolymers and Composites Derived from Sodium Polysialate”, Mater. Res. Bull., 38 [2] 319-331 (2003).
[60] D. Dimas, I. Giannopoulou and D. Panias, “Polymerization in Sodium Silicate Solutions: A Fundamental Process in Geopolymerization Technology”, J. Mater. Sci., 44 3719-3730 (2009).
[61] B. J. Dalgleish, K. P. Trumble and A. G. Evans, “The Strength and Fracture of Alumina Bonded with Aluminum Alloys”, Acta Metall. Mater., 37 [7] 1923-1931 (1989).
[62] J. Davidovits, Geopolymer: Green Chemistry and Sustainable Development Solutions, Geopolymer Institute, Saint-Quentin (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51172-
dc.description.abstract陶瓷材料的接合長久以來一直是具有挑戰性的研究主題。本研究的主要目的是探討以偏高嶺土基無機聚合物對氧化鋁基板之接合。
無機聚合物具有在接合過程中為液相又能在固化後強硬的特殊條件。本研究中使用氫氧化鈉強鹼溶液活化合成無機聚合物的分解與聚合等化學反應。鈉含量對於無機聚合物整體的性質有極大的影響,因此本研究中設計合成數種不同鈉含量之無機聚合物進行比較。同時,對於接合完成之三層試片進行微結構與機械性質等之量測。
結果顯示過量的鈉會散佈並插入在無機聚合物的結構中,使其不易形成交連架狀結構,進而使聚合度下降。如抗壓強度試驗的結果顯示鈉含量為10.7%的試樣強度明顯減弱。而紅外線光譜的分析結果也顯示聚合度會隨著鈉含量上升而降低。除此之外,由於鈉在高溫下易揮發,因此高鈉含量的試樣在加熱時會有較大的重損甚至產生形變。隨著溫度增加至攝氏700 度以上,原本非晶質的無機聚合物會相變為結晶的霞石。
而針對氧化鋁基板接合的三層試片,透過微結構與成分分析,顯示界面處有氧化鈉的生成,此氧化鈉層做為仲介層提升了氧化鋁與無機聚合物之間的界面強度。此外,四點彎曲試驗的結果也指出界面強度與鈉含量呈現正相關。熱導率的測量結果則顯示填入無機聚合物能夠有效降低氧化鋁基板之間的熱傳導。
zh_TW
dc.description.abstractThe joining of ceramic materials is a challenging issue. The primary purpose of the present study explores the use of metakaolin-based geopolymers to bond alumina substrates.
The geopolymer mortar is in liquid form before bonding. A strong structure is achieved after curing. In the present study, sodium hydroxide is able to activate the reactions in geopolymer. The sodium content is a critical factor for geopolymers; the sodium content in the geopolymer in the present study is varied. The resulting microstructure and mechanical properties of the Al2O3/geopolymer/Al2O3 joined specimens are measured.
The results demonstrate that excess sodium ions locate in the interstices of the structure, making it difficult to form a cross-linked frame, thus reduces the degree of polymerization. Compressive strength test shows a decrease for the specimens with the sodium content of 10.7%. The FTIR analysis indicates that the degree of polymerization
is decreased as more sodium is introduced. Moreover, because sodium is relatively volatile, the specimens with high sodium content suffered a severe weight loss and deformation. As the temperature is raised to 700°C, amorphous geopolymer transforms to crystalline nepheline.
After examined the microstructure and composition of the trilayer specimens, a sodium oxide layer was found at the interface. This interlayer enhances the adhesion strength between geopolymer and alumina substrate. The steady-state energy release rate measured from the four-point bending test also exhibited a positive correlation with the sodium content. A low thermal conductivity was observed for the trilayer specimens.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:26:41Z (GMT). No. of bitstreams: 1
ntu-104-R02527016-1.pdf: 4451602 bytes, checksum: 03a1982dc4c69f9295906fcc96ef4bd3 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiv
Chapter 1 Introduction 1
Chapter 2 Literature survey 3
2.1 Geopolymer 3
2.1.1 Criteria for synthesizing geopolymers 5
2.1.2 Structure of geopolymers 11
2.2 Geopolymer as coating or adhesive material 14
2.3 Interface properties 17
2.3.1 Crack tip characteristics 17
2.4 Adhesion strategies 21
2.5 Interface of ceramics 23
2.5.1 Adhesion strength 23
2.5.2 Adhesion measurement 25
2.5.3 Heat transfer 31
Chapter 3 Experimental Procedures 34
3.1 Starting materials 34
3.1.1 Alumina substrate 34
3.1.2 Geopolymer precursors 35
3.2 Geopolymer preparation 36
3.3 Microstructure examination 40
3.4 Joining process 42
3.5 Compressive strength test 43
3.6 Four-point bending test 44
3.7 Thermal conductivity measurement 46
Chapter 4 Results 48
4.1 Raw materials 48
4.1.1 Alumina substrate 48
4.1.2 Geopolymer precursors 49
4.2 Observation of geopolymer bulks 51
4.3 Weight change and size change 56
4.4 Fourier transform infrared spectroscopy analysis 60
4.5 Compressive strength test 65
4.6 Phase examination 66
4.7 Four-point bending test 71
4.8 Microstructure observation on the joint 75
4.9 Thermal diffusivity measurement 81
Chapter 5 Discussion 83
5.1 Factors affecting the structure of geopolymers 83
5.1.1 Dimension changes after heating 83
5.1.2 Chemical bonds 85
5.1.3 Compressive strength 88
5.2 Formation of secondary phases 91
5.2.1 Phase transformations 91
5.2.2 Sodium carbonate 93
5.2.3 Sodium oxide 94
5.3 Fracture behavior 96
5.3.1 Fracture process 96
5.3.2 Adhesion strength 97
5.3.3 Possible error in steady-state energy release rate 98
5.3.4 Fracture origin 100
5.4 Thermal conductivity 101
Chapter 6 Conclusions 103
Chapter 7 Future works 105
REFERENCES 107
dc.language.isoen
dc.title偏高嶺土基無機聚合物及其應用於接合氧化鋁之研究zh_TW
dc.titleStudy on Metakaolin-Based Geopolymer and Its Use on Joining Aluminaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭大偉,楊聰仁
dc.subject.keyword無機聚合物,氧化鋁,接合,界面強度,熱傳導係數,zh_TW
dc.subject.keywordGeopolymer,Al2O3,Bonding,Interfacial strength,Thermal conductivity,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2016-03-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved