Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51170
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorGuan-Yu Xiaoen
dc.contributor.author蕭冠宇zh_TW
dc.date.accessioned2021-06-15T13:26:38Z-
dc.date.available2026-12-31
dc.date.copyright2016-04-15
dc.date.issued2016
dc.date.submitted2016-03-14
dc.identifier.citationAlvarez-Erviti, L., Y. Q. Seow, H. F. Yin, C. Betts, S. Lakhal, and M. J. A. Wood. 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology 29: 341-U179.
Anderson, R. A., R. T. Mitchell, T. W. Kelsey, N. Spears, E. E. Telfer, and W. H. Wallace. 2015. Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. The lancet. Diabetes & endocrinology 3: 556-567.
Assou, S., T. Al-edani, D. Haouzi, N. Philippe, C. H. Lecellier, D. Piquemal, T. Commes, O. Ait-Ahmed, H. Dechaud, and S. Hamamah. 2013. MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex. Human reproduction 28: 3038-3049.
Atala, A. 2007. Engineering tissues, organs and cells. J. Tissue Eng. Regen. Med. 1: 83-96.
Baj-Krzyworzeka, M., K. Weglarczyk, B. Mytar, R. Szatanek, J. Baran, and M. Zembala. 2011. Tumour-derived microvesicles contain interleukin-8 and modulate production of chemokines by human monocytes. Anticancer Res. 31: 1329-1335.
Balaj, L., R. Lessard, L. Dai, Y. J. Cho, S. L. Pomeroy, X. O. Breakefield, and J. Skog. 2011. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature communications 2: 180.
Bandyopadhyay, S., J. Chakrabarti, S. Banerjee, A. K. Pal, S. K. Goswami, B. N. Chakravarty, and S. N. Kabir. 2003. Galactose toxicity in the rat as a model for premature ovarian failure: an experimental approach readdressed. Hum. Reprod. 18: 2031-2038.
Bartel, D. P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.
Baxter, M. A., R. F. Wynn, S. N. Jowitt, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono. 2004. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22: 675-682.
Beck-Peccoz, P., and L. Persani. 2006. Premature ovarian failure. Orphanet J. Rare Dis. 1: 9.
Bi, B., R. Schmitt, M. Israilova, H. Nishio, and L. G. Cantley. 2007. Stromal cells protect against acute tubular injury via an endocrine effect. J. Am. Soc. Nephrol. 18: 2486-2496.
Bollini, S., M. Pozzobon, M. Nobles, J. Riegler, X. Dong, M. Piccoli, A. Chiavegato, A. N. Price, M. Ghionzoli, K. K. Cheung, A. Cabrelle, P. R. O'Mahoney, E. Cozzi, S. Sartore, A. Tinker, M. F. Lythgoe, and P. De Coppi. 2011. In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem cell reviews 7: 364-380.
Bruning, P. F., M. J. Pit, M. de Jong-Bakker, A. van den Ende, A. Hart, and A. van Enk. 1990. Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br. J. Cancer 61: 308-310.
Bruno, S., C. Grange, M. C. Deregibus, R. A. Calogero, S. Saviozzi, F. Collino, L. Morando, A. Busca, M. Falda, B. Bussolati, C. Tetta, and G. Camussi. 2009a. Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury. J. Am. Soc. Nephrol. 20: 1053-1067.
Bruno, S., C. Grange, M. C. Deregibus, R. A. Calogero, S. Saviozzi, F. Collino, L. Morando, A. Busca, M. Falda, B. Bussolati, C. Tetta, and G. Camussi. 2009b. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20: 1053-1067.
Bryant-Greenwood, G. D. 1998. The extracellular matrix of the human fetal membranes: structure and function. Placenta 19: 1-11.
Bryniarski, K., M. Ptak, and W. Ptak. 1996. The in vivo and in vitro effects of an alkylating agent, mechlorethamine, on IL-6 production in mice and the role of macrophages. Immunopharmacology 34: 73-78.
Byrne, J. 1999. Long-term genetic and reproductive effects of ionizing radiation and chemotherapeutic agents on cancer patients and their offspring. Teratology 59: 210-215.
Camussi, G., M. C. Deregibus, S. Bruno, V. Cantaluppi, and L. Biancone. 2010. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78: 838-848.
Carraro, G., L. Perin, S. Sedrakyan, S. Giuliani, C. Tiozzo, J. Lee, G. Turcatel, S. P. De Langhe, B. Driscoll, S. Bellusci, P. Minoo, A. Atala, R. E. De Filippo, and D. Warburton. 2008. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 26: 2902-2911.
Carter, J., K. Rowland, D. Chi, C. Brown, N. Abu-Rustum, M. Castiel, and R. Barakat. 2005. Gynecologic cancer treatment and the impact of cancer-related infertility. Gynecol. Oncol. 97: 90-95.
Chang, Y. J., T. Y. Ho, M. L. Wu, S. M. Hwang, T. W. Chiou, and M. S. Tsai. 2013. Amniotic fluid stem cells with low gamma-interferon response showed behavioral improvement in parkinsonism rat model. PLoS One 8: e76118.
Chemaitilly, W., A. C. Mertens, P. Mitby, J. Whitton, M. Stovall, Y. Yasui, L. L. Robison, and C. A. Sklar. 2006. Acute ovarian failure in the childhood cancer survivor study. J. Clin. Endocrinol. Metab. 91: 1723-1728.
Cheng, C. C., W. S. Lian, F. S. Hsiao, I. H. Liu, S. P. Lin, Y. H. Lee, C. C. Chang, G. Y. Xiao, H. Y. Huang, C. F. Cheng, W. T. Cheng, and S. C. Wu. 2012. Isolation and characterization of novel murine epiphysis derived mesenchymal stem cells. PLoS One 7: e36085.
Cheng, H. S., M. S. Njock, N. Khyzha, L. T. Dang, and J. E. Fish. 2014. Noncoding RNAs regulate NF-kappaB signaling to modulate blood vessel inflammation. Frontiers in genetics 5: 422.
Cheng, H. S., N. Sivachandran, A. Lau, E. Boudreau, J. L. Zhao, D. Baltimore, P. Delgado-Olguin, M. I. Cybulsky, and J. E. Fish. 2013. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol. Med. 5: 949-966.
Chesler, L., D. Goldenberg, R. Collins, M. Grimmer, G. E. Kim, T. Tihan, K. Nguyen, S. Yakovenko, K. K. Matthay, and W. A. Weiss. 2008a. Chemotherapy-Induced Apoptosis in a Transgenic Model of Neuroblastoma Proceeds Through p53 Induction. Neoplasia 10: 1268-U1293.
Chesler, L., D. D. Goldenberg, R. Collins, M. Grimmer, G. E. Kim, T. Tihan, K. Nguyen, S. Yakovenko, K. K. Matthay, and W. A. Weiss. 2008b. Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia 10: 1268-1274.
Cocucci, E., G. Racchetti, and J. Meldolesi. 2009. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19: 43-51.
Dai, W., G. L. Kay, A. J. Jyrala, and R. A. Kloner. 2013. Experience from experimental cell transplantation therapy of myocardial infarction: what have we learned? Cell Transplant. 22: 563-568.
Daley, G. Q. 2012. The promise and perils of stem cell therapeutics. Cell stem cell 10: 740-749.
De Broe, M. E., R. J. Wieme, G. N. Logghe, and F. Roels. 1977. Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro. Clin. Chim. Acta 81: 237-245.
De Coppi, P., G. Bartsch, Jr., M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala. 2007a. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25: 100-106.
De Coppi, P., A. Callegari, A. Chiavegato, L. Gasparotto, M. Piccoli, J. Taiani, M. Pozzobon, L. Boldrin, M. Okabe, E. Cozzi, A. Atala, P. Gamba, and S. Sartore. 2007b. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J. Urol. 177: 369-376.
De Coppi, P., A. Callegari, A. Chiavegato, L. Gasparotto, M. Piccoli, J. Taiani, M. Pozzobon, L. Boldrin, M. Okabe, E. Cozzi, A. Atala, P. Gamba, and S. Sartore. 2007c. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J. Urol. 177: 369-376.
De Feo, D., A. Merlini, C. Laterza, and G. Martino. 2012. Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr. Opin. Neurol. 25: 322-333.
De Gemmis, P., C. Lapucci, M. Bertelli, A. Tognetto, E. Fanin, R. Vettor, C. Pagano, M. Pandolfo, and A. Fabbri. 2006. A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells. Stem cells and development 15: 719-728.
De Vos, M., J. Smitz, and T. K. Woodruff. 2014. Fertility preservation in women with cancer. Lancet 384: 1302-1310.
Deregibus, M. C., V. Cantaluppi, R. Calogero, M. Lo Iacono, C. Tetta, L. Biancone, S. Bruno, B. Bussolati, and G. Camussi. 2007. Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110: 2440-2448.
Desmeules, P., and P. J. Devine. 2006. Characterizing the ovotoxicity of cyclophosphamide metabolites on cultured mouse ovaries. Toxicol. Sci. 90: 500-509.
Donnez, J., P. Jadoul, J. Squifflet, A. Van Langendonckt, O. Donnez, A. S. Van Eyck, C. Marinescu, and M. M. Dolmans. 2010. Ovarian tissue cryopreservation and transplantation in cancer patients. Best Pract. Res. Clin. Obstet. Gynaecol. 24: 87-100.
Fu, X., Y. He, C. Xie, and W. Liu. 2008. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy 10: 353-363.
Ghose, J., M. Sinha, E. Das, N. R. Jana, and N. P. Bhattacharyya. 2011. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington's disease. PloS one 6: e23837.
Gnecchi, M., Z. P. Zhang, A. G. Ni, and V. J. Dzau. 2008. Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy. Circ. Res. 103: 1204-1219.
Goswami, D., and G. S. Conway. 2005. Premature ovarian failure. Hum. Reprod. Update 11: 391-410.
Gregory, R. I., T. P. Chendrimada, and R. Shiekhattar. 2006. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342: 33-47.
Guescini, M., S. Genedani, V. Stocchi, and L. F. Agnati. 2010. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 117: 1-4.
Gulinelli, S., E. Salaro, M. Vuerich, D. Bozzato, C. Pizzirani, G. Bolognesi, M. Idzko, F. Di Virgilio, and D. Ferrari. 2012. IL-18 associates to microvesicles shed from human macrophages by a LPS/TLR-4 independent mechanism in response to P2X receptor stimulation. Eur. J. Immunol. 42: 3334-3345.
Happo, L., M. S. Cragg, B. Phipson, J. M. Haga, E. S. Jansen, M. J. Herold, G. Dewson, E. M. Michalak, C. J. Vandenberg, G. K. Smyth, A. Strasser, S. Cory, and C. L. Scott. 2010. Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood 116: 5256-5267.
Heijnen, H. F. G., A. E. Schiel, R. Fijnheer, H. J. Geuze, and J. J. Sixma. 1999. Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94: 3791-3799.
Helleday, T., E. Petermann, C. Lundin, B. Hodgson, and R. A. Sharma. 2008. DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer 8: 193-204.
Hillier, S. G. 2001. Gonadotropic control of ovarian follicular growth and development. Mol. Cell. Endocrinol. 179: 39-46.
Ho, J., P. Pandey, T. Schatton, S. Sims-Lucas, M. Khalid, M. H. Frank, S. Hartwig, and J. A. Kreidberg. 2011. The Pro-Apoptotic Protein Bim Is a MicroRNA Target in Kidney Progenitors. Journal of the American Society of Nephrology 22: 1053-1063.
Hsiao, F. S. H., C. C. Cheng, S. Y. Peng, H. Y. Huang, W. S. Lian, M. L. Jan, Y. T. Fang, E. C. H. Cheng, K. H. Lee, W. T. K. Cheng, S. P. Lin, and S. C. Wu. 2010. Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective single-step plastic-adherent method. Cell Prolif. 43: 235-248.
Hudson, M. M. 2010. Reproductive outcomes for survivors of childhood cancer. Obstet. Gynecol. 116: 1171-1183.
Hughes, F. M., Jr., and W. C. Gorospe. 1991. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 129: 2415-2422.
Ibrahim, A. G. E., K. Cheng, and E. Marban. 2014. Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy. Stem Cell Rep 2: 606-619.
Imbert, R., F. Moffa, S. Tsepelidis, P. Simon, A. Delbaere, F. Devreker, J. Dechene, A. Ferster, I. Veys, M. Fastrez, Y. Englert, and I. Demeestere. 2014. Safety and usefulness of cryopreservation of ovarian tissue to preserve fertility: a 12-year retrospective analysis. Hum. Reprod. 29: 1931-1940.
In 't Anker, P. S., S. A. Scherjon, C. Kleijburg-van der Keur, G. M. de Groot-Swings, F. H. Claas, W. E. Fibbe, and H. H. Kanhai. 2004. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22: 1338-1345.
Jeanes, H., D. Newby, and G. A. Gray. 2007. Cardiovascular risk in women: the impact of hormone replacement therapy and prospects for new therapeutic approaches. Expert Opin. Pharmacother. 8: 279-288.
Jemal, A., R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun. 2007. Cancer statistics, 2007. CA Cancer J. Clin. 57: 43-66.
Jiang, J. Y., C. K. Cheung, Y. Wang, and B. K. Tsang. 2003. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front. Biosci. 8: d222-237.
Jiang, W., L. Kong, Q. Ni, Y. Lu, W. Ding, G. Liu, L. Pu, W. Tang, and L. Kong. 2014. miR-146a ameliorates liver ischemia/reperfusion injury by suppressing IRAK1 and TRAF6. PLoS One 9: e101530.
Johnson, J., J. Canning, T. Kaneko, J. K. Pru, and J. L. Tilly. 2004. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428: 145-150.
Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238: 265-272.
Joo, S., I. K. Ko, A. Atala, J. J. Yoo, and S. J. Lee. 2012. Amniotic fluid-derived stem cells in regenerative medicine research. Arch. Pharm. Res. 35: 271-280.
Joyce, N., G. Annett, L. Wirthlin, S. Olson, G. Bauer, and J. A. Nolta. 2010. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 5: 933-946.
Kaipia, A., and A. J. Hsueh. 1997. Regulation of ovarian follicle atresia. Annu. Rev. Physiol. 59: 349-363.
Lai, D., F. Wang, Y. Chen, L. Wang, Y. Wang, and W. Cheng. 2013. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility. BMC Dev. Biol. 13: 34.
Lee, H. J., K. Selesniemi, Y. Niikura, T. Niikura, R. Klein, D. M. Dombkowski, and J. L. Tilly. 2007a. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J. Clin. Oncol. 25: 3198-3204.
Lee, H. K., S. Finniss, S. Cazacu, C. L. Xiang, and C. Brodie. 2014. Mesenchymal Stem Cells Deliver Exogenous miRNAs to Neural Cells and Induce Their Differentiation and Glutamate Transporter Expression. Stem cells and development 23: 2851-2861.
Lee, K. H., C. K. Chuang, H. W. Wang, L. Stone, C. H. Chen, and C. F. Tu. 2007b. An alternative simple method for mass production of chimeric embryos by coculturing denuded embryos and embryonic stem cells in Eppendorf vials. Theriogenology 67: 228-237.
Lee, S. J., L. R. Schover, A. H. Partridge, P. Patrizio, W. H. Wallace, K. Hagerty, L. N. Beck, L. V. Brennan, K. Oktay, and O. American Society of Clinical. 2006. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J. Clin. Oncol. 24: 2917-2931.
Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim, and V. N. Kim. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419.
Lee, Y., M. Kim, J. J. Han, K. H. Yeom, S. Lee, S. H. Baek, and V. N. Kim. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23: 4051-4060.
Leotta, M., L. Biamonte, L. Raimondi, D. Ronchetti, M. T. Di Martino, C. Botta, E. Leone, M. R. Pitari, A. Neri, A. Giordano, P. Tagliaferri, P. Tassone, and N. Amodio. 2014. A p53-Dependent Tumor Suppressor Network Is Induced by Selective miR-125a-5p Inhibition in Multiple Myeloma Cells. J. Cell. Physiol. 229: 2106-2116.
Lewis, B. P., C. B. Burge, and D. P. Bartel. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20.
Liang, X., Y. Ding, Y. Zhang, H. F. Tse, and Q. Lian. 2013. Paracrine mechanisms of Mesenchymal Stem cell-based therapy: Current status and perspectives. Cell Transplant.
Lima, R. T., S. Busacca, G. M. Almeida, G. Gaudino, D. A. Fennell, and M. H. Vasconcelos. 2011. MicroRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer 47: 163-174.
Liu, T., Y. Huang, L. Guo, W. Cheng, and G. Zou. 2012. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int. J. Med. Sci. 9: 592-602.
Lund, E., and J. E. Dahlberg. 2006. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71: 59-66.
Majka, M., A. Janowska-Wieczorek, J. Ratajczak, K. Ehrenman, Z. Pietrzkowski, M. A. Kowalska, A. M. Gewirtz, S. G. Emerson, and M. Z. Ratajczak. 2001. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97: 3075-3085.
Matzuk, M. M., K. H. Burns, M. M. Viveiros, and J. J. Eppig. 2002. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296: 2178-2180.
McLaren, A. 2003. Primordial germ cells in the mouse. Dev. Biol. 262: 1-15.
Mittelbrunn, M., C. Gutierrez-Vazquez, C. Villarroya-Beltri, S. Gonzalez, F. Sanchez-Cabo, M. A. Gonzalez, A. Bernad, and F. Sanchez-Madrid. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature communications 2.
Mittelbrunn, M., and F. Sanchez-Madrid. 2012. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Bio 13: 328-335.
Morgan, S., R. A. Anderson, C. Gourley, W. H. Wallace, and N. Spears. 2012. How do chemotherapeutic agents damage the ovary? Hum. Reprod. Update 18: 525-535.
Morita, Y., G. I. Perez, D. V. Maravei, K. I. Tilly, and J. L. Tilly. 1999. Targeted expression of Bcl-2 in mouse oocytes inhibits ovarian follicle atresia and prevents spontaneous and chemotherapy-induced oocyte apoptosis in vitro. Mol. Endocrinol. 13: 841-850.
Murchison, E. P., and G. J. Hannon. 2004. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16: 223-229.
Nadri, S., M. Soleimani, R. H. Hosseni, M. Massumi, A. Atashi, and R. Izadpanah. 2007. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51: 723-729.
Nelson, J. F., L. S. Felicio, P. K. Randall, C. Sims, and C. E. Finch. 1982. A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biol. Reprod. 27: 327-339.
Niwa, H., K. Yamamura, and J. Miyazaki. 1991. Efficient Selection for High-Expression Transfectants with a Novel Eukaryotic Vector. Gene 108: 193-199.
Okabe, M., M. Ikawa, K. Kominami, T. Nakanishi, and Y. Nishimune. 1997. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407: 313-319.
Ono, M., N. Kosaka, N. Tominaga, Y. Yoshioka, F. Takeshita, R. U. Takahashi, M. Yoshida, H. Tsuda, K. Tamura, and T. Ochiya. 2014. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science signaling 7: ra63.
Partridge, A. H., S. Gelber, J. Peppercorn, E. Sampson, K. Knudsen, M. Laufer, R. Rosenberg, M. Przypyszny, A. Rein, and E. P. Winer. 2004. Web-based survey of fertility issues in young women with breast cancer. J. Clin. Oncol. 22: 4174-4183.
Pegtel, D. M., K. Cosmopoulos, D. A. Thorley-Lawson, M. A. J. van Eijndhoven, E. S. Hopmans, J. L. Lindenberg, T. D. de Gruijl, T. Wurdinger, and J. M. Middeldorp. 2010. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. U. S. A. 107: 6328-6333.
Peister, A., J. A. Mellad, B. L. Larson, B. M. Hall, L. F. Gibson, and D. J. Prockop. 2004. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103: 1662-1668.
Pepling, M. E. 2006. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis 44: 622-632.
Perin, L., S. Giuliani, D. Jin, S. Sedrakyan, G. Carraro, R. Habibian, D. Warburton, A. Atala, and R. E. De Filippo. 2007. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 40: 936-948.
Persani, L., R. Rossetti, and C. Cacciatore. 2010. Genes involved in human premature ovarian failure. J. Mol. Endocrinol. 45: 257-279.
Petrek, J. A., M. J. Naughton, L. D. Case, E. D. Paskett, E. Z. Naftalis, S. E. Singletary, and P. Sukumvanich. 2006. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24: 1045-1051.
Petrillo, S. K., P. Desmeules, T. Q. Truong, and P. J. Devine. 2011a. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicol Appl Pharmacol 253: 94-102.
Petrillo, S. K., P. Desmeules, T. Q. Truong, and P. J. Devine. 2011b. Detection of DNA damage in oocytes of small ovarian follicles following phosphoramide mustard exposures of cultured rodent ovaries in vitro. Toxicol. Appl. Pharmacol. 253: 94-102.
Plowchalk, D. R., and D. R. Mattison. 1991. Phosphoramide Mustard Is Responsible for the Ovarian Toxicity of Cyclophosphamide. Toxicol. Appl. Pharmacol. 107: 472-481.
Practice Committee of American Society for Reproductive, M. 2014. Ovarian tissue cryopreservation: a committee opinion. Fertil. Steril. 101: 1237-1243.
Prusa, A. R., E. Marton, M. Rosner, G. Bernaschek, and M. Hengstschlager. 2003. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum. Reprod. 18: 1489-1493.
Ratajczak, J., M. Wysoczynski, F. Hayek, A. Janowska-Wieczorek, and M. Z. Ratajczak. 2006. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20: 1487-1495.
Record, M., K. Carayon, M. Poirot, and S. Silvente-Poirot. 2014. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841: 108-120.
Rennie, K., A. Gruslin, M. Hengstschlager, D. Pei, J. Cai, T. Nikaido, and M. Bani-Yaghoub. 2012. Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem cells international 2012: 721538.
Roccaro, A. M., A. Sacco, P. Maiso, A. K. Azab, Y. T. Tai, M. Reagan, F. Azab, L. M. Flores, F. Campigotto, E. Weller, K. C. Anderson, D. T. Scadden, and I. M. Ghobrial. 2013. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J. Clin. Invest. 123: 1542-1555.
Rosendahl, M., C. Y. Andersen, N. la Cour Freiesleben, A. Juul, K. Lossl, and A. N. Andersen. 2010. Dynamics and mechanisms of chemotherapy-induced ovarian follicular depletion in women of fertile age. Fertil. Steril. 94: 156-166.
Rota, C., B. Imberti, M. Pozzobon, M. Piccoli, P. De Coppi, A. Atala, E. Gagliardini, C. Xinaris, V. Benedetti, A. S. C. Fabricio, E. Squarcina, M. Abbate, A. Benigni, G. Remuzzi, and M. Morigi. 2012. Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells Dev 21: 1911-1923.
Rozmyslowicz, T., M. Majka, J. Kijowski, S. L. Murphy, D. O. Conover, M. Poncz, J. Ratajczak, G. N. Gaulton, and M. Z. Ratajczak. 2003. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17: 33-42.
Rustom, A., R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes. 2004. Nanotubular highways for intercellular organelle transport. Science 303: 1007-1010.
Salama, M., K. Winkler, K. F. Murach, B. Seeber, S. C. Ziehr, and L. Wildt. 2013. Female fertility loss and preservation: threats and opportunities. Ann. Oncol. 24: 598-608.
Salama, M., and T. K. Woodruff. 2015. New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Rev.
Sandhu, R., J. Rein, M. D'Arcy, J. I. Herschkowitz, K. A. Hoadley, and M. A. Troester. 2014. Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status. Carcinogenesis 35: 2567-2575.
Sawant, D. V., H. Wu, M. H. Kaplan, and A. L. Dent. 2013. The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol. Immunol. 54: 435-442.
Schickel, R., B. Boyerinas, S. M. Park, and M. E. Peter. 2008. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27: 5959-5974.
Siekevitz, P. 1972. Biological membranes: the dynamics of their organization. Annu. Rev. Physiol. 34: 117-140.
Sioud, M., and D. R. Sorensen. 2003. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochemical and biophysical research communications 312: 1220-1225.
Subra, C., D. Grand, K. Laulagnier, A. Stella, G. Lambeau, M. Paillasse, P. De Medina, B. Monsarrat, B. Perret, S. Silvente-Poirot, M. Poirot, and M. Record. 2010. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res. 51: 2105-2120.
Subra, C., K. Laulagnier, B. Perret, and M. Record. 2007. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89: 205-212.
Sun, M., S. Wang, Y. Li, L. Yu, F. Gu, C. Wang, and Y. Yao. 2013. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell. Res. Ther. 4: 80.
Taganov, K. D., M. P. Boldin, K. J. Chang, and D. Baltimore. 2006. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U. S. A. 103: 12481-12486.
Takahashi, H., T. Kanno, S. Nakayamada, K. Hirahara, G. Sciume, S. A. Muljo, S. Kuchen, R. Casellas, L. Wei, Y. Kanno, and J. J. O'Shea. 2012. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat. Immunol. 13: 587-595.
Takahashi, Y., M. Nishikawa, H. Shinotsuka, Y. Matsui, S. Ohara, T. Imai, and Y. Takakura. 2013. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J. Biotechnol. 165: 77-84.
Takehara, Y., A. Yabuuchi, K. Ezoe, T. Kuroda, R. Yamadera, C. Sano, N. Murata, T. Aida, K. Nakama, F. Aono, N. Aoyama, K. Kato, and O. Kato. 2013. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab. Invest. 93: 181-193.
Taraboletti, G., S. D'Ascenzo, I. Giusti, D. Marchetti, P. Borsotti, D. Millimaggi, R. Giavazzi, A. Pavan, and V. Dolo. 2006. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8: 96-103.
Thakur, B. K., H. Zhang, A. Becker, I. Matei, Y. Huang, B. Costa-Silva, Y. Zheng, A. Hoshino, H. Brazier, J. Xiang, C. Williams, R. Rodriguez-Barrueco, J. M. Silva, W. Zhang, S. Hearn, O. Elemento, N. Paknejad, K. Manova-Todorova, K. Welte, J. Bromberg, H. Peinado, and D. Lyden. 2014. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24: 766-769.
Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.
Tomasoni, S., L. Longaretti, C. Rota, M. Morigi, S. Conti, E. Gotti, C. Capelli, M. Introna, G. Remuzzi, and A. Benigni. 2013a. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem cells and development 22: 772-780.
Tomasoni, S., L. Longaretti, C. Rota, M. Morigi, S. Conti, E. Gotti, C. Capelli, M. Introna, G. Remuzzi, and A. Benigni. 2013b. Transfer of Growth Factor Receptor mRNA Via Exosomes Unravels the Regenerative Effect of Mesenchymal Stem Cells. Stem Cells Dev 22.
Toyooka, Y., N. Tsunekawa, Y. Takahashi, Y. Matsui, M. Satoh, and T. Noce. 2000. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93: 139-149.
Valadi, H., K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee, and J. O. Lotvall. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9: 654-U672.
van der Meel, R., M. H. A. M. Fens, P. Vader, W. W. van Solinge, O. Eniola-Adefeso, and R. M. Schiffelers. 2014. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J Control Release 195: 72-85.
Vidulescu, C., S. Clejan, and K. C. O'Connor. 2004. Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J. Cell. Mol. Med. 8: 388-396.
Waldenstrom, A., N. Genneback, U. Hellman, and G. Ronquist. 2012. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7: e34653.
Xin, H., Y. Li, B. Buller, M. Katakowski, Y. Zhang, X. Wang, X. Shang, Z. G. Zhang, and M. Chopp. 2012. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem cells 30: 1556-1564.
Xue, X. C., T. Feng, S. X. Yao, K. J. Wolf, C. G. Liu, X. P. Liu, C. O. Elson, and Y. Z. Cong. 2011. Microbiota Downregulates Dendritic Cell Expression of miR-10a, Which Targets IL-12/IL-23p40. J. Immunol. 187: 5879-5886.
Yang, L., Y. L. Wang, S. Liu, P. P. Zhang, Z. Chen, M. Liu, and H. Tang. 2014. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Lett. 588: 124-130.
Yates, L. A., C. J. Norbury, and R. J. C. Gilbert. 2013. The Long and Short of MicroRNA. Cell 153: 516-519.
Zhang, Y. J., D. Q. Liu, X. Chen, J. Li, L. M. Li, Z. Bian, F. Sun, J. W. Lu, Y. A. Yin, X. Cai, Q. Sun, K. H. Wang, Y. Ba, Q. A. Wang, D. J. Wang, J. W. Yang, P. S. Liu, T. Xu, Q. A. Yan, J. F. Zhang, K. Zen, and C. Y. Zhang. 2010. Secreted Monocytic miR-150 Enhances Targeted Endothelial Cell Migration. Mol. Cell 39: 133-144.
Zhao, X. J., Y. H. Huang, Y. C. Yu, and X. Y. Xin. 2010. GnRH antagonist cetrorelix inhibits mitochondria-dependent apoptosis triggered by chemotherapy in granulosa cells of rats. Gynecol. Oncol. 118: 69-75.
Zou, K., Z. Yuan, Z. Yang, H. Luo, K. Sun, L. Zhou, J. Xiang, L. Shi, Q. Yu, Y. Zhang, R. Hou, and J. Wu. 2009. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat. Cell Biol. 11: 631-636.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51170-
dc.description.abstract化療經常使用於治療各種惡性腫瘤以提升癌症患者之存活率。然而,化療卻會對於女性卵巢內支持卵母細胞和濾泡生長的顆粒性細胞 (granulosa cells, GCs) 造成損傷,因而導致永久性的卵巢早衰 (premature ovarian failure, POF)。近來研究指出,羊水幹細胞 (amniotic fluid stem cells, AFSCs) 具有方便取得之特性 (easy accessibility),細胞原始性 (primitive stage) 以及低免疫原性 (low immunogenicity) 等優點,因此被認為是有潛力運用於再生醫學之細胞來源。這些研究顯示羊水幹細胞具有運用於臨床上治療卵巢早衰之潛能,惟其治療效果和其分子機制迄今未明。本研究自普遍表現綠色螢光蛋白質 (enhanced green fluorescence protein, EGFP) 之小鼠分離其羊水幹細胞,以追蹤此羊水幹細胞於移植後之細胞命運。結果發現,羊水幹細胞之外觀型態,細胞表面抗原表型 (immunophenotypes),以及中胚層三系分化潛能之特性均類似於間葉幹細胞 (mesenchymal stem cells, MSCs)。而羊水幹細胞之增殖速率則優於間葉幹細胞,且會表現多分化潛能之分子標誌,OCT4。試驗證實,羊水幹細胞移植進入化療處理之小鼠卵巢後,不僅確能有效防止卵巢濾泡之閉鎖化現象且能有效維持其濾泡之存活,進而修復小鼠之生育力。然而,移植後之羊水幹細胞於體內並無分化成顆粒性細胞或是生殖細胞之現象。進一步試驗發現,羊水幹細胞主要是透過其外泌因子 (secretory factors) 發揮其治療效果,而羊水幹細胞分泌之胞外泌體 (exosomes) 能夠再現其對於化療誘導損傷之顆粒性細胞之抗凋亡效果 (anti-apoptotic effect)。此外,羊水幹細胞之胞外泌體於化療處理之小鼠卵巢內可透過傳遞微型核糖核酸 (microRNAs, miRNAs) 之方式有效防止濾泡閉鎖。其中,羊水幹細胞以及其胞外泌體均高量表現 miR-146a 以及 miR-10a,而此二分子之目標基因均和細胞凋亡之分子路徑有高度相關。抑制此二微型核糖核酸於胞外泌體中之表現會顯著地降低其對於化療誘導損傷之顆粒性細胞之抗凋亡效果,然而,直接將此二分子運送至化療誘導損傷之顆粒性細胞中或是卵巢中,其均能夠重現羊水幹細胞之胞外泌體之療效,miR-10a 之效果尤為顯著。此研究成果闡明 miR-10a 於羊水幹細胞治療機轉中扮演了重要角色,並暗示在臨床上使用非細胞 (cell-free) 之治療策略,達成有效治療卵巢早衰之可行性。zh_TW
dc.description.abstractChemotherapy (CTx) is commonly used for treating various malignant tumors and for improving the survival rate of cancer patients. However, CTx causes damage to ovarian granulosa cells (GCs), which are required for oocyte survival and follicle development, and results in irreversible premature ovarian failure (POF) in female patients. Recently, amniotic fluid stem cells (AFSCs) emerge as a novel source for regenerative medicine due to their easy accessibility, primitive stage and low immunogenicity. These findings suggest the potential of AFSCs for treating ovarian failure in clinic, but its restorative efficacy and mechanisms are still unclear. In this study, AFSCs were isolated from transgenic mice that ubiquitously express enhanced green fluorescence protein (EGFP), which enables us to trace the fate of AFSCs after transplantation. These AFSCs exhibit morphologies, immunophenotypes, and mesoderm trilineage differentiation potentials similar to mesenchymal stem cells (MSCs). Further, AFSCs proliferate faster than MSCs and express OCT4, a marker for pluripotency. After transplanting into the ovaries of CTx-mice, AFSCs could rescue the reproductive ability of CTx-mice by preventing follicle atresia and sustaining the healthy follicles. Notably, the transplanted AFSCs did not differentiate into GCs and germline cells in vivo. Next, I demonstrate that the therapeutic effects of AFSCs mainly derived from their secretory factors in which AFSC-derived exosomes reproduce the anti-apoptotic effect on CTx-damaged GCs. AFSC-derived exosomes prevent ovarian follicular atresia in CTx-mice via the delivery of microRNAs (miRNAs) in which both miR-146a and miR-10a are highly enriched and their potential target genes are critical to apoptosis. Down-regulation of these two miRNAs in AFSC-derived exosomes attenuates the anti-apoptotic effect on CTx-damaged GCs in vitro whereas administration of these miRNAs recapitulates the effects both in vitro and in vivo in which miR-10a contributes a dominant influence. These findings suggest a potential mechanism for the effects of AFSCs on CTx-damaged ovaries and the dominant role of miR-10a in the regenerative process that implies the promise of a new cell-free therapeutics for treating POF.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:26:38Z (GMT). No. of bitstreams: 1
ntu-105-D01642004-1.pdf: 46681558 bytes, checksum: d27f3d8ca6367c052376bfef79c68b98 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
Chapter 2 Literature Review and Significance 3
2.1 Literature Review 3
2.1.1 Chemotherapy-induced infertility 3
2.1.2 Stem cell-based therapy for treating CTx-induced POF 4
2.1.3 Amniotic fluid stem cells 5
2.1.4 Role of exosomes in stem cell-based therapy 6
2.1.5 Exosome-shuttled mRNA and miRNA involved in stem cell-based therapy 7
2.2 Significance 9
Chapter 3 Therapeutic Effects of AFSCs on POF Model Mice 10
3.1 Background 10
3.2 Materials and Methods 11
3.3 Results 19
3.4 Discussion 38
Chapter 4 AFSC-derived Exosomes Contributes to the Therapeutic Effects through Delivery of RNA 41
4.1 Background 41
4.2 Materials and Methods 42
4.3 Results 45
4.4 Discussion 51
Chapter 5 The Restorative Effects of Exosomal MiRNAs from AFSCs on Damaged Ovary 52
5.1 Background 52
5.2 Materials and Methods 53
5.3 Results 58
5.4 Discussion 72
Chapter 6 General Discussion 75
Chapter 7 Conclusions 78
REFERENCES 81
PUBLICATIONS 100
APPENDIX 101
dc.language.isoen
dc.title探討羊水幹細胞治療化療誘發卵巢早衰小鼠之潛能與分子機制zh_TW
dc.titleThe Therapeutic Potential and Mechanism of Amniotic Fluid Stem
Cells in Rescuing Fertility in Mice with Chemotherapy-Induced
Premature Ovarian Failure
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.coadvisor劉逸軒(I-Hsuan Liu)
dc.contributor.oralexamcommittee鄭登貴(Winston Teng-Kuei Cheng),宋麗英(Li-Ying Sung),林劭品(Shau-Ping Lin)
dc.subject.keyword卵巢早衰,再?醫學,羊水幹細胞,胞外泌體,微型核糖核酸,zh_TW
dc.subject.keywordPremature ovarian failure,Regenerative medicine,Amniotic fluid stem cells,Exosomes,MicroRNAs,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2016-03-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
45.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved