Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5116
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorYu-Huan Wuen
dc.contributor.author吳郁寰zh_TW
dc.date.accessioned2021-05-15T17:52:07Z-
dc.date.available2019-08-17
dc.date.available2021-05-15T17:52:07Z-
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citationReferences
1. Friden, T., et al., Proprioception after an acute knee ligament injury: a longitudinal study on 16 consecutive patients. Journal of Orthopaedic Research, 1997. 15(5): p. 637-644.
2. Nordin, M. and V.H. Frankel, Basic biomechanics of the musculoskeletal system2001: Lippincott Williams & Wilkins.
3. Matsumoto, H., et al., Axis location of tibial rotation and its change with flexion angle. Clinical Orthopaedics and Related Research, 2000(371): p. 178-182.
4. Kanamori, A., et al., The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy, 2000. 16(6): p. 633-639.
5. Kadaba, M.P., H.K. Ramakrishnan, and M.E. Wootten, Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research, 1990. 8(3): p. 383-392.
6. Lafortune, M.A., et al., Three-dimensional kinematics of the human knee during walking. Journal of Biomechanics, 1992. 25(4): p. 347-357.
7. Ramsey, D.K., et al., Assessment of functional knee bracing: An in vivo three-dimensional kinematic analysis of the anterior cruciate deficient knee. Clinical Biomechanics, 2001. 16(1): p. 61-70.
8. Lu, T.W. and J.J. O'Connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics, 1999. 32(2): p. 129-134.
9. Torzilli, P.A., R.L. Greenberg, and J. Insall, An in vivo biomechanical evaluation of anterior-posterior motion of the knee. Roentgenographic measurement technique, stress machine, and stable population. Journal of Bone and Joint Surgery - Series A, 1981. 63(6): p. 960-968.
10. Selvik, G., Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthopaedica Scandinavica, Supplement, 1989. 60(232): p. 1-51.
11. Baltzopoulos, V., A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clinical Biomechanics, 1995. 10(2): p. 85-92.
12. Valstar, E.R., et al., Model-based Roentgen stereophotogrammetry of orthopaedic implants. Journal of Biomechanics, 2001. 34(6): p. 715-722.
13. Dennis, D.A., et al., Range of motion after total knee arthroplasty: The effect of implant design and weight-bearing conditions. Journal of Arthroplasty, 1998. 13(7): p. 748-752.
14. Banks, S.A. and W.A. Hodge, Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Transactions on Biomedical Engineering, 1996. 43(6): p. 638-649.
15. Kozinska, D., et al., Multidimensional Alignment Using the Euclidean Distance Transform. Graphical Models and Image Processing, 1997. 59(6): p. 373-387.
16. Danielsson, P.E., Euclidean distance mapping. Computer Graphics and Image Processing, 1980. 14(3): p. 227-248.
17. Kriegman, D.J. and J. Ponce, Computing exact aspect graphs of curved objects: Solids of revolution. International Journal of Computer Vision, 1990. 5(2): p. 119-135.
18. Tsai, T.Y., et al., A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Medical Physics, 2010. 37(3): p. 1273-1284.
19. Lu, T.W., et al., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical Engineering and Physics, 2008. 30(8): p. 1004-1012.
20. Griffin, L.Y., et al., Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. The Journal of the American Academy of Orthopaedic Surgeons, 2000. 8(3): p. 141-150.
21. Scavenius, M., et al., Isolated total ruptures of the anterior cruciate ligament - A clinical study with long-term follow-up of 7 years. Scandinavian Journal of Medicine and Science in Sports, 1999. 9(2): p. 114-119.
22. Tandogan, R.N., et al., Analysis of meniscal and chondral lesions accompanying anterior cruciate ligament tears: Relationship with age, time from injury, and level of sport. Knee Surgery, Sports Traumatology, Arthroscopy, 2004. 12(4): p. 262-270.
23. Gillquist, J. and K. Messner, Anterior cruciate ligament reconstruction and the long term incidence of gonarthrosis. Sports Medicine, 1999. 27(3): p. 143-156.
24. Logan, M., et al., Tibiofemoral Kinematics of the Anterior Cruciate Ligament (ACL)-Deficient Weightbearing, Living Knee Employing Vertical Access Open ' Interventional' Multiple Resonance Imaging. American Journal of Sports Medicine, 2004. 32(3): p. 720-726.
25. Dennis, D.A., et al., In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. Journal of Biomechanics, 2005. 38(2): p. 241-253.
26. Defrate, L.E., et al., The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: An in vivo imaging analysis. American Journal of Sports Medicine, 2006. 34(8): p. 1240-1246.
27. Li, G., et al., Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. Journal of Bone and Joint Surgery - Series A, 2006. 88(8): p. 1826-1834.
28. Miyaji, T., et al., In vivo kinematics of the anterior cruciate ligament deficient knee during wide-based squat using a 2D/3D registration technique. Journal of Sports Science and Medicine, 2012. 11(4): p. 695-702.
29. Henning, C.E., M.A. Lynch, and K.R. Glick Jr, An in vivo strain gage study of elongation of the anterior cruciate ligament. American Journal of Sports Medicine, 1985. 13(1): p. 22-26.
30. Fleming, B.C., et al., The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. American Journal of Sports Medicine, 1998. 26(1): p. 109-118.
31. Eisner, W.D., et al., Electromyographic timing analysis of forward and backward cycling. Medicine and Science in Sports and Exercise, 1999. 31(3): p. 449-455.
32. Ting, L.H., et al., Phase reversal of biomechanical functions and muscle activity in backward pedaling. Journal of Neurophysiology, 1999. 81(2): p. 544-551.
33. Neptune, R.R. and S.A. Kautz, Knee joint loading in forward versus backward pedaling: Implications for rehabilitation strategies. Clinical Biomechanics, 2000. 15(7): p. 528-535.
34. So, R.C.H., J.K.F. Ng, and G.Y.F. Ng, Muscle recruitment pattern in cycling: A review. Physical Therapy in Sport, 2005. 6(2): p. 89-96.
35. Hug, F. and S. Dorel, Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology, 2009. 19(2): p. 182-198.
36. Umberger, B.R. and P.E. Martin, Testing the planar assumption during ergometer cycling. Journal of Applied Biomechanics, 2001. 17(1): p. 55-62.
37. Hamai, S., et al., Three-dimensional knee joint kinematics during golf swing and stationary cycling after total knee arthroplasty. Journal of Orthopaedic Research, 2008. 26(12): p. 1556-1561.
38. Tamborindeguy, A.C. and R. Rico Bini, Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? Journal of Bodywork and Movement Therapies, 2011. 15(2): p. 186-191.
39. Sanner, W.H. and W.D. O'Halloran, The biomechanics, etiology, and treatment of cycling injuries. Journal of the American Podiatric Medical Association, 2000. 90(7): p. 354-376.
40. 莊克士, 醫學影像物理學1998: 合記圖書出版社.
41. Mahesh, M., The AAPM/RSNA physics tutorial for residents. Fluoroscopy: patient radiation exposure issues. Radiographics, 2001. 21(4): p. 1033-1045.
42. Abdel-Aziz, Y., Karara. HM (1971) Direct linear transformation from comparator co-ordinates into objectspace co-ordinates in close-range photogrammetry. Proceedings of the S_vmp0. rium on C lose-Rarige Phomgramrnerry. Falls Church. VA: American Society of Photogrammetry.
43. Lorensen, W.E. and H.E. Cline, MARCHING CUBES: A HIGH RESOLUTION 3D SURFACE CONSTRUCTION ALGORITHM. Computer Graphics (ACM), 1987. 21(4): p. 163-169.
44. Wilson, D.R., et al., The components of passive knee movement are coupled to flexion angle. Journal of Biomechanics, 2000. 33(4): p. 465-473.
45. Bowers, M.E., et al., Quantitative MR imaging using 'LiveWire' to measure tibiofemoral articular cartilage thickness. Osteoarthritis and Cartilage, 2008. 16(10): p. 1167-1173.
46. Zavatsky, A.B. and J.J. O'Connor, Model of human knee ligaments in the sagittal plane. Part 1: Response to passive flexion. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1992. 206(3): p. 125-134.
47. Zavatsky, A.B. and J.J. O'Connor, Model of human knee ligaments in the sagittal plane. Part 2: Fibre recruitment under load. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1992. 206(3): p. 135-145.
48. Zavatsky, A.B. and J.J. O'Connor, Three-dimensional geometrical models of human knee ligaments. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1994. 208(4): p. 229-240.
49. Penner, D.A., et al., An in vitro study of anterior cruciate ligament graft placement and isometry. American Journal of Sports Medicine, 1988. 16(3): p. 238-243.
50. Bailey, M.P., F.J. Maillardet, and N. Messenger, Kinematics of cycling in relation to anterior knee pain and patellar tendinitis. Journal of Sports Sciences, 2003. 21(8): p. 649-657.
51. Jordan, S.S., et al., The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. American Journal of Sports Medicine, 2007. 35(4): p. 547-554.
52. Papannagari, R., et al., Function of posterior cruciate ligament bundles during in vivo knee flexion. American Journal of Sports Medicine, 2007. 35(9): p. 1507-1512.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5116-
dc.description.abstract活體研究人體膝關節進行自行車踩踏運動時不同踩踏方式下的運動學分析有助於預防運動傷害以及增加復健效率。目前對於自行車踩踏過程中精確的活體非侵入式三維運動學量測與研究仍然缺乏。本研究目的為建構以雙平面動態X光結合斷層掃瞄骨頭模型方法為基礎的自行車運動學量測平台,量測十二位正常年輕男性在高阻力踩踏與低阻力踩踏情況下之精確三維膝關節運動學,更進一步搭配磁振造影而得的軟骨厚度計算關節表面運動學、以簡化後的前十字韌帶與後十字韌帶計算長度變化與伸長量變化。並且利用自主伸曲運動計算活體韌帶初始長度。
本研究結果發現,正常人進行自行車踩踏運動,無論高阻力踩踏或低阻力踩踏,其踩踏過程的運動模式大致上相似。高阻力對於關節角度產生最顯著的影響在於矢狀面的屈曲角度降低,尤其在踩踏的動力輸出期。阻力使得踩踏動力輸出期之膝關節表面接觸點在膝關節彎曲角度70度以下顯著往後側移動。踩踏過程中後十字韌帶伸長量顯著大於前十字韌帶伸長量,但阻力對韌帶伸長量影響並不顯著。
本研究建構的自行車運動量測平台未來可運用在不同踩踏方式下膝關節運動學的研究。本研究結果呈現的精確運動學資訊可提供更進一步的研究。另外,本研究中成功利用精確量測自主伸曲運動搭配磁振造影所得之韌帶附著位置找尋韌帶等長纖維的方法未來將可提供活體非侵入式決定個人化韌帶重建位置的參考。
zh_TW
dc.description.abstractIn-vivo measurement of the three-dimensional (3D) kinematics during cycling is essential for the prevention of injuries due to overuse and improving the rehabilitation efficacy. The methods for measuring accurate 3D kinematics during cycling were still lacking. The purposes of the current study were to establish a platform for measuring knee kinematics during cycling based on the technique combining CT bone models and bi-planer fluoroscopy. Twelve normal young subjects were recruited, aiming to measure the knee kinematics during loaded and unloaded cycling. The thickness of the articular surfaces cartilage was calculated from MRI model and the surface kinematics was calculated. The elongation of simplified anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) changes were reported. And the reference lengths of the ligaments were determined by isolated knee flexion and extension motion.
The findings of the current research are as follows. The patterns of loaded and unloaded cycling are shown similar, but the flexion angles are significantly decreased especially during power phase under loaded cycling. The load also affected the position of the articular contact points on tibial plateau especially when knee flexion angle lower than 70°. The elongation of the simplified PCL was shown larger than that of ACL. The load did not affect the elongation of the ACL and PCL.
The established platform can be helpful f, and the knee kinematics presented in the research can be helpful for advanced study. Furthermore, the method used to define isometric fibre of ACL and PCL in this research may be useful to provide in vivo, noninvasive and subject-specific determination of the ligament replacement.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:52:07Z (GMT). No. of bitstreams: 1
ntu-103-R01548019-1.pdf: 6441270 bytes, checksum: 56732bd571fc4b678485f82a0e1d5799 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
第一節 研究背景 1
第二節 膝關節功能解剖構造 1
第三節 膝關節運動學 3
第四節 膝關節運動學量測 4
第五節 前十字韌帶損傷與自行車復健運動 9
第六節 研究目的 13
第二章 材料與方法 14
第一節 實驗設備與儀器 14
第二節 受試者 17
第三節 系統校正 17
第四節 實驗流程 20
第三章 動態X光系統成像 22
第一節 系統成像原理 22
第二節 校正方法 24
第四章 骨模型建立與資料分析 28
第一節 骨頭三維模型 28
第二節 數位化重建投影影像 29
第三節 模擬動態X光投影介面 30
第四節 最佳化方法 32
第五節 資料分析 34
第六節 統計分析 37
第五章 決定韌帶初始長度 38
第六章 結果 44
第一節 膝關節角度 44
第二節 膝關節位移 48
第三節 膝關節表面接觸型態與接觸點軌跡 51
第四節 韌帶伸長量變化 59
第七章 討論 63
第八章 結論 69
References 71
dc.language.isozh-TW
dc.subject膝關節表面運動學zh_TW
dc.subject動態X光zh_TW
dc.subject自行車運動zh_TW
dc.subject膝關節運動學zh_TW
dc.subject韌帶伸長量zh_TW
dc.subject韌帶等長纖維zh_TW
dc.subjectligament elongationen
dc.subjectcyclingen
dc.subjectisometric fibreen
dc.subjectknee kinematicsen
dc.subjectknee surface kinematicsen
dc.subjectfluoroscopyen
dc.title利用三維動態X光量測正常年輕人於自行車運動中膝關節之運動zh_TW
dc.titleKinematic Measurement of Normal Young Subjects’ Knees During Cycling Using 3D Fluoroscopyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文斌(Weng-Pin Chen),楊世偉(Sai-Wei Yang)
dc.subject.keyword動態X光,自行車運動,膝關節運動學,膝關節表面運動學,韌帶等長纖維,韌帶伸長量,zh_TW
dc.subject.keywordfluoroscopy,cycling,knee kinematics,knee surface kinematics,isometric fibre,ligament elongation,en
dc.relation.page74
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf6.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved