Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51169
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫(Kai-Wun Yeh)
dc.contributor.authorYao-Chung Liuen
dc.contributor.author劉耀中zh_TW
dc.date.accessioned2021-06-15T13:26:36Z-
dc.date.available2021-04-15
dc.date.copyright2016-04-15
dc.date.issued2016
dc.date.submitted2016-03-17
dc.identifier.citation台灣行政院農業委員會。http://www.coa.gov.tw/show_index.php。
林崇熙。(2011)。知識天地 小小蘭花真有趣。中央研究院週報 第1322期。6-8。
林瑞松、徐懷恩、賴淑芬、陳加忠。(1998)。光度與光期對文心蘭開花率與開花品質之影響。中華農業氣象 第五卷 第4期。193-202。
劉麗飛、張孟基。(2004)。GM作物的現況與前景。行政院農業委員會動植物防疫檢疫局 基因改造議題-從紛爭到展望。10-25。
劉麗飛、顏雯玲 (編輯)。(2007)。附錄五、基因轉殖植物田間試驗遺傳特性調查申請書件。行政院農委會農糧署 基因轉殖植物田間試驗參考手冊。129-140。
郭華仁、周桂田。(2004)。基改作物的全球經驗。行政院農業委員會動植物防疫檢疫局 基因改造議題-從紛爭到展望。120-157。
洪德欽。(2008)。消費者權利在歐盟基改食品標示之規定與實踐。歐美研究 第4期。509-578。
黃皓瑄。(2012)。農桿菌-自然界的基因改造者。科學發展 第478期。54-59。
蔣慕琰、袁秋英。(2005)。基因轉殖植物雜草風險研究與評估。基因轉殖植物之生物安全評估與檢測專刊。65-85。
邱金春、王三太。(2011)。遠緣雜交育種障礙及克服策略。農業試驗所技術服務 第85期。19-22。
許榮華。(2013)。台灣文心蘭切花產銷現況及產業經營需求。台中區農業改良 特刊116號。201-207。
張朝晏。(2009)。文心蘭之健康管理。2009 花卉健康管理研討會專刊。195-202。
張允瓊。(1996)。溫度、光度及肥料濃度對文心蘭生長與開花之影響。國立台灣大學園藝學研究所學位論文。台北。
陳烈夫、丁孟宜、吳明哲、吳惠卿、魏夢麗、呂秀英。(2008)。基因轉殖作物共存模式與隔離距離。科學農業 第56期。35-47。
日本農林水產省。http://www.maff.go.jp/。
蔡東明、莊耿彰、謝廷芳。(2011)。進攻日本文心蘭切花市場的明日之星 台農4號「白雪」。農業試驗所技術服務 第85期。35。
蔡東明、莊耿彰、謝廷芳。(2012)。文心蘭新品種之選育。2011年花卉研究團隊成果發表會專刊。51-60。
蔡東明、莊耿彰、謝廷芳。(2013)。文心蘭切花之育種。台灣蘭花之育種 台灣蘭花育種者協會。96-104。
易美秀、魏芳明、蔡宛育、許謙信、陳彥樺。(2011)。文心蘭雜交育種。台中區農業專訊 第74期。7-9。
王希平。(2002)。基因改造食品管理之相關法律問題研究。東吳大學法律學研究所學位論文。台北。
余祁暐。(2013)。卡塔赫納生物安全議定書發展現況分析。主要國家基因改造作物管理體系研析報告。1-22。
余祁暐、楊玉婷。(2011)。全球基因改造科技發展趨勢 以基改蘭玫瑰為例。台灣經濟研究月刊 第3期。50-56。
余祁暐、楊玉婷。(2012)。日、韓基因改造科技發展現況與管理制度分析。農業生技產業季刊 第29期。
組換りЬсЬ安全性評価研究ヲюみк。(1992)。遺伝子組換りズプゲサTMV抵抗性メ付与ウギЬсЬソ生態系ズ対エペ安全性評価。農林水産省農業環境技術研究所 農業環境技術研究所報告 8号。筑波。
Andrade-Souza, V., Costa, M.G., Chen, C.X., Gmitter, F.G. Jr., and Costa, M.A. (2011). Physical location of the carotenoid biosynthesis genes Psy and β-Lcy in Capsicum annuum (Solanaceae) using heterologous probes from Citrus sinensis (Rutaceae). Genetics and Molecular Research 10: 404-409.
Brenda, A.L., Prakash, N.S., Way, M., Mann, M.T., Spencer, T.M., and Boddupalli, R.S. (2009). Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Research 18: 831-840.
Convention on Biological Diversity (CBD):https://www.cbd.int/
Christinet, L., Burdet, F.X., Zaiko, M., Hinz, U., and Zrÿd J.P. (2004). Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol 134: 265-274.
Caplan, A., Herrera-Estrella, L., Inzé, D., Van Haute, E., Van Montagu, M., Schell, J., and Zambryski, P. (1983). Introduction of genetic material into plant cells. Science 222: 815-821.
Chen, H.C., Klein, A., Xiang, M.H., Backhaus, R.A., and Kuntz, M. (1998). Droughtand wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. The Plant Journal 14: 317-326.
Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116.
Chiou, C.Y., Pan, H.A., Chuang, Y.N., and Yeh, K.W. (2010). Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta 232: 937-948.
Chiou, C.Y., Wu, K., and Yeh, K.W. (2008). Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey. Biotechnology Letters 30: 1861-1866.
Chiou, C.Y., and Yeh, K.W. (2008). Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Molecular Biology 66: 379-388.
Demmig-Adams B, Adams WW 3rd. (2002). Antioxidants in photosynthesis and human nutrition. Science 298: 2149-2153.
Diretto, G., Al-Babili, S., Tavazza, R., Scossa, F., Papacchioli, V., Migliore, M., Beyer, P., and Giuliano, G. (2010). Transcriptional-metabolic networks in beta-caroteneenriched potato tubers: the long and winding road to the Golden phenotype. Plant Physiology 154: 899-912.
Deroles, S.C., Bradley, J.M., Schwinn, K.E., Markham, K.R., Bloor, S.J., and Manson, D.G. (1998). An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers. Molecular Breeding 4: 59-66.
Deruere, J., Romer, S., d’Harlingue, A., Backhaus, R.A., Kuntz, M., and Camara, B. (1994). Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. The Plant Cell 6: 119-133.
Dai, S.H., Zheng, P., Marmey, P., Zhang S.P., Tian, W.Z., Chen, S., Beachy, R.N., and Fauquet, C. (2001). Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding 7: 25-33.
Elomaa, P., Honkanen, J., Puske, R., Sepponen, P., Helariutta, Y., and Mehto, M. (1993). Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Biotechnology 11: 508-511.
Fujii, Y., Parvez, S.S, Parvez, M.M., Ohmae, Y., and IIDA, O. (2003). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management 3: 233-241.
Fujii, Y., Shibuya, T., Nakatani, K., Itani, T., Hiradate, S., and Parvez, M.M. (2004). Assessment method for allelopathic effect from leaf litter leachates. Weed Biology Management 4:19-23.
Giuliano, G., Bartley, G.E., and Scolnik, P.A. (1993). Regulation of carotenoid biosynthesis during tomato development. The Plant Cell 4: 379-387.
Giuliano, G., Tavazza, R., Diretto, G., Beyer, P., and Taylor, M.A. (2008). Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotechnology 26: 139-145.
Grlesbach, R.J. (1984). Effects of carotenoid–anthocyanin combinations on flower color. Journal of Heredity 75: 145-147.
Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G., Lu, C.Y., Farcy, E., Stevenson, T.W., and Cornish, E.C. (1993). Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366: 276-279.
Hieber, A.D., Mudalige-Jayawickrama R.G., and Kuehnle A.R. (2006). Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. Planta 223: 521-531.
Iyer, L.M., Kumpatla, S.P., Chandrasekharan, M.B., and Hall, T.C. (2000). Transgene silencing in monocots. Plant Molecular Biology 43: 323-346.
James, C. (2014). Global Status of Commercialized Bioteck/GM Crops: 2014. ISAAA Briefs No. 49. ISAAA: Ithaca, NY.
Kaiser, R. (1993). Orchids of the American tropics. Roche Basel ED. The Scent of Orchid. Composed and printed by Morf and Co. AG, Basel. 115-116.
Karasawa, K. (1989). Oncidium and Odontoglossums. Orchid Altas 7.
Katsumoto, Y., Fukuchi-Mizutani, M., Fukui, Y., Brugliera, F., Holton, T.A., Karan, M., Nakamura, N., Yonekura-Sakakibara, K., Togami, J., Pigeaire, A., Tao, G.Q., Nehra, N.S., Lu, C.Y., Dyson, B.K., Tsuda, S., Ashikari, T., Kusumi, T., Mason, J.G., and Tanaka, Y. (2007). Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 11: 1589-1600.
Kim, S.R., Jeon, J.S., and An, G. (2011). Development of an efficient inverse PCR method for isolating gene tags from T-DNA insertional mutants in rice. Plant Reverse Genetics: Methods and Protocols 678: 139-146.
Kikuchi, A., Kawaoka, A., Shimazaki, T., Yu, X., Ebinuma, H., and Watanabe, K.N. (2006). Trait stability and environmental biosafety assessments on three transgenic Eucalyptus lines (Eucalyptus camaldulensis Dehnh. codA 12–5B, codA 12–5C, codA 20-C) conferring salt tolerance. Breeding Research 8: 17-26. (in Japanese)
Kishimoto, S., Sumitomo, K., Yagi, M., Nakayama, M., and Ohmiya, A. (2007). Three routes to orange petal color via carotenoid components in 9 Compositae species. Journal of the Japanese Society for Horticulture Science 76: 250-257.
Liu, X.J., Chuang, Y.N., Chiou, C.Y., Chin, D.C., Shen, F.Q., and Yeh, K.W. (2012). Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars. Planta 236: 401-409.
Liu, J.X., Chiou, C.Y., Shen, C.H., Chen, P.J., Liu, Y.C., Jian, C.D., Shen, X.L., Shen, F.Q., and Yeh, K.W. (2014). RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid. Springerplus 3: 478.
Leitner-Dagan, Y., Ovadis, M., Shklarman, E., Elad, Y., Rav David, D., and Vainstein, A. (2006). Expression and functional analyses of the plastid lipid-associated protein CHRC suggest its role in chromoplastogenesis and stress. Plant Physiology 142: 233-244.
Liau, C.H., You, S.J., Prasad, V., Hsiao, H.H., Lu, J.C., Yang, N.S., and Chan, M.T. (2003). Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Reports 10: 993-998.
Michielse, C.B., Ram, A.F.J., Hooykaas, P.J.J., and van den Hondel, C.A.M.J.J. (2004a). Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA structures. Journal of Bacteriology 186: 2038-2045.
Meier, S., Tzfadia, O., Vallabhaneni, R., Gehring, C., and Wurtzel, E.T. (2011). A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Systems Biology 5: 77.
Michiels, A., Van den Ende, W., Tucker, M., Van Riet, L., and Van Laere, A. (2003). Extraction of high-quality genomic DNA from latex-containing plants. Analytical Biochemistry 315: 85-89.
Nisar, N., Li, L., Lu, S., Khin, N.C., and Pogson, B.J. (2015). Carotenoid metabolism in plants. Molecular Plant 8: 68-82.
Ochman, H., Gerber, A.S., and Hartl, D.L. (1988). Genetic application of an inverse polymerase chain reaction. Genetics 120: 621-623.
Ogawa, K., Tasaka, Y., Mino, M., Tanaka, Y., and Iwabuchi, M. (2001). Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiology 42: 524-530.
Parvez, S.S., Parvez, M.M., Nishihara, E., Gemma, H., and Fujii, Y. (2003). Tamarindus indica L. leaf is a source of allelopathic substance. Plant Growth Regulation 40: 107-115.
Ronen, G., Cohen, M., Zamir, D., and Hirschberg, J. (1999). Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is downregulated during ripening and is elevated in the mutant Delta. The Plant Journal 17: 341-351.
Rahman, I., Kode, A., and Biswas, S.K. (2007). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols 1: 3159-3165.
Reigosa, Manuel, J., Pedrol, Nuria, González, Luís (Eds.). (2006). Allelopathy- A Physiological Process with Ecological Implications. Springer.
Suntory Holdings Ltd. http://www.suntory.co.jp./
Shiomi, M., Asakawa, Y., Fukumoto, F., Hamaya, E., Hasebe, A., Ichikawa, H., Matsuda, I., Muramatsu, T., Okada, M., Sato, M., Ukai, Y., Yokoyama, K., Motoyoshi, F., Ohashi, Y., Ugaki, M., and Noguchi, K. (1992). Evaluation of the impact of the release of transgenic tomato plants with TMV resistance on the environment. Bulletin of National Institute for Agro-Environmental Sciences Japan 8: 1-51. ISSN 0911-9450 (in Japanese with English summary)
Schubert, N., Garcia-Mendoza, E., and Pacheco-Ruiz, I. (2006). Carotenoid composition of marine red algae. Journal of Phycology 42:1208-1216.
Stahl, R., Horvath, H., Van Fleet, J., Voetz, M., Von Wettstein, D., and Wolf, N. (2002). T-DNA integration into the barley genome from single and double cassette vectors. Proceedings of the National Academy of Sciences of the USA 99: 2146-2151.
Sha, Y., Li, S., Pei, Z., Luo, L., Tian, Y., and He, C. (2004). Generation and flanking sequence analysis of a rice T-DNA tagged population. Theoretical and Applied Genetics 108: 306-314.
Sheehy, R., Pearson, J., Brady, C., and Hiatt, W. (1987). Molecular characterization of tomato fruit polygalacturonase . Molecular Genetics and Genomics 208 : 30-36.
Sambrook, J., Russel, D.W. (2001). Analysis of DNA: Southern blotting. Molecular cloning: a laboratory manual 4th edition: 88-152.
Trezzini, G.F., Zrÿd, J.P. (1991). Two betalains from Portulaca grandiflora. Phytochemistry 30: 1897-1899.
Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Mourrain, P., Palauqui, J.C., and Vernhettes, S. (1998). Transgene-induced gene silencing in plant. The Plant Journal 16: 651-659.
Vainstein, A., Halevy, A.H., Smirra, I., and Vishnevetsky, M. (1994). Chromoplast biogenesis in Cucumis sativus corollas (Rapid effect of gibberellin A3 on the accumulation of a chromoplast-specific carotenoid-associated Protein). Plant Physiology 2: 321-326.
Van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N., and Stuitje, A.R. (1990). Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant Cell 4: 291-299.
Vishnevetsky, M., Ovadis, M., Itzhaki, H., Levy, M., Libal-Weksler, Y., Adam, Z., and Vainstein, A. (1996). Molecular cloning of a carotenoid-associated protein from Cucumis sativus corollas: homologous genes involved in carotenoid sequestration in chromoplasts. The Plant Journal 10: 1111-1118.
Vishnevetsky, M., Ovadis, M., and Vainstein, A. (1999b). Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends in Plant Science 4: 232–235.
Vishnevetsky, M., Ovadis, M., Zuker, A., and Vainstein, A. (1999a). Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. The Plant Journal 20: 423-431.
Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126: 485-493.
Willis, R.J. (2007). The History of Allelopathy. Springer.
Yu, J., Grishkan, I., and Steinberger Y. (2013). Microfungal community diversity in Zygophyllum dumosum and Hammada scoparia root zones in the northern Negev Desert. Journal of Basic Microbiology 53: 390-400.
Yu, X., Kikuchi, A., Shimazaki, T., Yamada, A., Ozeki, Y., Matsunaga, E., Ebinuma, H., and Watanabe, K.N. (2013). Assessment of the salt tolerance and environmental biosafety of Eucalyptus camaldulensis harboring a mangrin transgene. Journal of Plant Reaearch 126: 141-150.
Yang, L.T., Zhao, Z.H., Ding, J.Y., Zhang, C.M., Jia, J.W., and Zhang, D.B. (2005a). Estimating copy number of transgenes in transformed rice by real-time quantitative PCR. Chinese Journal of Food Hygiene 17: 140-144.
Zeng, W., Huang, M., Wang, X., Ampomah-Dwamena, C., Xu, Q., and Deng, X. (2013). Identification and Functional Characterization of the Promoter of a Phytoene Synthase from Sweet Orange (Citrus sinensis Osbeck). Plant Molecular Biology 31: 64-74.
Zhang, J., Lin, C., Cheng, J.Q., Mao, H.Z., Fan, X.P., Meng, Z.H., Chan, K.M., Zhang, H.J., Qi, J.F., Ji, L.H., and Hong, Y. (2008). Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Research 17: 293-306.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51169-
dc.description.abstract台灣貴為蘭花王國,外銷切花又以文心蘭為大宗,由於外銷切花品系過於單一,要長期符合市場需求著實困難,有鑑於此,本實驗室將文心蘭phytoene synthase (OgPSY)-RNAi構築,透過農桿菌轉殖方式,孕育出了轉殖白花文心蘭。在此試驗中我們獲取了三個獨立轉殖株,分別為MF-1、MF-14以及MF-17。依照台灣現行針對基因改造作物 (GMOs) 的相關法規,必須通過基因轉殖植物「遺傳性狀調查」以及「環境生物安全評估」兩項檢測,方能申請該基因改造作物之品種權。透過本論文之研究顯示,由於選用花瓣專一表達啟動子 (Pchrc) 驅動OgPSY-RNAi構築,僅專一地降解文心蘭花辦中OgPSY之表現;HPLC結果亦顯示轉殖文心蘭花辦中類胡蘿蔔色素明顯下降;另外分析轉殖文心蘭母本兩次開花以及組培繁殖子代之花瓣,結果顯示OgPSY-RNAi構築能穩定地表現其功能;由於MF-1在組培的子代族群 (P1) 中出現了許多變異株,故進一步利用此獨立轉殖系 (MF-1) 探討光線與溫度對Pchrc活性的影響,發現兩者環境因子都可能影響OgPSY之表現,造成花色的差異。而經由Southern blot以及inverse PCR分析,瞭解基因轉殖文心蘭皆僅具有單一拷貝數,且其T-DNA兩翼之序列皆屬於非編碼DNA。透過環境生物安全相關試驗,相較於非轉殖株,轉殖文心蘭並無顯著生物相剋作用的現象發生,且並不會影響其根圈微生物相之生長。最後,本論文之研究亦可作為日後台灣基因轉殖花卉評估的先驅及準則,建立台灣基因轉殖花卉管理之完善制度。zh_TW
dc.description.abstractTaiwan has a reputation in the agricultural modification for Oncidesa, of the orchid Kingdom, which is mainly for export as cut flowers. One of the major crisis faced by marketing Oncidesa is its dull appearance of florets and it has remained unchanged for a very long time in any aspect of colors. Currently, the Oncidesa cut flower market is facing a new demand for a new spectrum of colors. With the aid of our previous study, we have devloped a white floret Oncidesa through RNA interference technology. However, one of the major concern deemed by the government of Taiwan is that it required a genetic characterization and environmental biosafety assessment on surrounding biosphere for any genetically modificated organisms (GMOs). Therefore in this study, our plant materials were all grown in a special netted house. Additionally, we were able to characterize this transgenic white Oncidesa and define its transgenic RNAi allele (OgPSY) through genetic characterization. Furthermore, we showed that its phenotype could be sustained within two repetitive vegetative regenerations and that the transformants showed no sign of detrimental and environmental impact to the biosphere as compared with its non-transformant counterparts. Moreover, we investigated the effects of light and temperature on the transgenic Pchrc activity and found that these two environmental factors affected the potency of OgPSY RNAi, resulting in floret color variation on independent generation line of transgenic Oncidesa. Thus, this study holds valuable information in the aspect of the viability of sustaining a stable transgenic line and successfully introducing transgenic Oncidesa in the biosphere.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:26:36Z (GMT). No. of bitstreams: 1
ntu-105-R02b42023-1.pdf: 7912509 bytes, checksum: b5bd77c221f495bb4d3f8dded20d90f6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要.................................................i
Abstract................................................ii
檢索表..................................................iii
目錄.....................................................iv
圖表目錄.................................................vi
附錄圖表目錄............................................viii
第一章 前言...............................................1
1.1 基因轉殖蜜雪文心蘭概述.............................1
1.2 基因改造生物概述...................................9
1.3 研究目的.........................................13
第二章 材料與方法.........................................15
2.1 實驗架構圖.......................................15
2.2 實驗材料.........................................16
2.3 基因轉殖蜜雪文心蘭DNA檢測.........................16
2.4 基因轉殖蜜雪文心蘭胡蘿蔔素生成途徑相關基因表現量測定.18
2.5 以HPLC分析基因轉殖文心蘭花瓣類胡蘿蔔色素之含量差異..22
2.6 利用inverse PCR釣取基因轉殖蜜雪文心蘭T-DNA之flanking sequences...............................................23
第三章 結果..............................................37
3.1 基因轉殖蜜雪文心蘭遺傳特性調查.....................37
3.1.1 轉殖株之鑑定分析............................37
3.1.2 分析外源基因在轉殖株之表現部位...............38
3.1.3 外源基因在基因轉殖植株之穩定性分析............39
3.1.4 花瓣之類胡蘿蔔素生成途徑相關基因表現差異分析...39
3.1.5 花瓣中類胡蘿蔔色素含量差異分析................40
3.1.6 基因轉殖蜜雪文心蘭T-DNA插入之拷貝數分析.......41
3.1.7 基因轉殖蜜雪文心蘭插入之T-DNA兩翼序列釣取.....41
3.2 不同光度及不同溫差對基因轉殖蜜雪文心蘭花色之影響....42
3.3 基因轉殖蜜雪文心蘭生物安全試驗.....................45
3.3.1 農桿菌依附於基因轉殖蜜雪文心蘭1號組培苗之測試..45
3.3.2 基因轉殖蜜雪文心蘭1號之生物相剋作用測試.......45
3.3.3 基因轉殖蜜雪文心蘭1號之根圈微生物分析.........46
第四章 討論..............................................48
4.1 基因轉殖蜜雪文心蘭分子遺傳特性分析.................48
4.2 基因轉殖蜜雪文心蘭南方墨點以及T-DNA兩翼序列分析.....51
4.3 環境對白花文心蘭蜜雪1號花色之影響..................52
4.4 基因轉殖蜜雪文心蘭1號之環境生物安全試驗............54
4.5 未來展望........................................57
參考文獻................................................59
圖表....................................................70
附錄表..................................................93
附錄圖..................................................94
dc.language.isozh-TW
dc.title基因轉殖白花文心蘭蜜雪之遺傳性狀及環境生物安全之研究zh_TW
dc.titleGenetic characterization and biosafety assessment of transgenic Oncidesa Gower Ramsey “Honey Snow”en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王淑珍(Shu-Jen Wang),靳宗洛(Tsung-Luo Jinn),鄭秋萍(Chiu-Ping Cheng),陳仁治(Jen-Chih Chen)
dc.subject.keyword文心蘭,基因改造作物,遺傳特性調查,環境生物安全評估,zh_TW
dc.subject.keywordOncidesa,genetically modificated organisms (GMOs),genetic characterization,environmental biosafety assessment,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201600125
dc.rights.note有償授權
dc.date.accepted2016-03-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
7.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved