Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51166
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇
dc.contributor.authorYou-An Leeen
dc.contributor.author李祐安zh_TW
dc.date.accessioned2021-06-15T13:26:32Z-
dc.date.available2016-04-15
dc.date.copyright2016-04-15
dc.date.issued2015
dc.date.submitted2016-03-21
dc.identifier.citationBibliography
[1] H. G. Andrews, E. A. Eccles, W. C. E. Schofield, and J. P. S. Badyal, 'Three-
dimensional hierarchical structures for fog harvesting,' Langmuir, vol. 27, pp.
3798-3802, 2011.
[2] A. Lee, M. W. Moon, H. Lim, W. D. Kim, and H. Y. Kim, 'Water harvest via
dewing,' Langmuir, vol. 28, pp. 10183-10191, 2012.
[3] A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, 'Advances in seawater
desalination technologies,' Desalination, vol. 221, pp. 47-69, 2008.
[4] T. Humplik, J. Lee, S. C. O'Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M.
A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, 'Nanostructured
materials for water desalination,' Nanotechnology, vol. 22, 292001, 2011.
[5] J. M. Beer, 'High efficiency electric power generation: The environmental
role,' Progress in Energy and Combustion Science, vol. 33, pp. 107-134,
2007.
[6] R. J. McGlen, R. Jachuck, and S. Lin, 'Integrated thermal management
techniques for high power electronic devices,' Applied Thermal Engineering,
vol. 24, pp. 1143-1156, 2004.
[7] T. B. Peters, M. McCarthy, J. Allison, F. A. Dominguez-Espinosa, D. Jenicek,
H. A. Kariya, W. L. Staats, J. G. Brisson, J. H. Lang, and E. N. Wang, 'Design
of an Integrated Loop Heat Pipe Air-Cooled Heat Exchanger for High
Performance Electronics,' IEEE Transactions on Components Packaging and
Manufacturing Technology, vol. 2, pp. 1637-1648, 2012.
[8] W. Nusselt, 'The surface condensation of water vapour.,' Zeitschrift Des
Vereines Deutscher Ingenieure, vol. 60, pp. 541-546, 1916.
[9] E. Schmidt, W. Schurig, and W. Sellschopp, 'Condensation of water vapour in
film- and drop form,' Zeitschrift Des Vereines Deutscher Ingenieure, vol. 74,
pp. 544-544, 1930.
[10] J. W. Rose, 'Dropwise condensation theory and experiment: a review,'
Proceedings of the Institution of Mechanical Engineers Part a-Journal of
Power and Energy, vol. 216, pp. 115-128, 2002.
[11] D. W. Tanner, D. West, D. Pope, and C. J. Potter, 'Promotion of dropwise
condensation by monolayers of radioactive fatty acids .I. stearic acid on
copper surfaces,' Journal of Applied Chemistry, vol. 14, pp. 361-369, 1964.
[12] M. P. Bonnar, B. M. Burnside, J. Christie, E. J. Sceal, C. E. Troupe, and J. I. B.
Wilson, 'Hydrophobic coatings from plasma polymerized
vinyltrimethylsilane,' Chemical Vapor Deposition, vol. 5, pp. 117-125, 1999.
[13] D. W. Woodruff and J. W. Westwater, 'Steam condensation on electroplated
gold - effect of plating thickness,' International Journal of Heat and Mass
Transfer, vol. 22, pp. 629-632, 1979.
[14] G. A. Oneill and J. W. Westwater, 'Dropwise condensation of steam on
electroplated silver surfaces,' International Journal of Heat and Mass
Transfer, vol. 27, pp. 1539-1549, 1984.
[15] K. M. Holden, A. S. Wanniarachchi, P. J. Marto, D. H. Boone, and J. W. Rose,
'The use of organic coatings to promote dropwise condensation of steam,'
Journal of Heat Transfer-Transactions of the ASME, vol. 109, pp. 768-774,
1987.
[16] A. Taniguchi and Y. H. Mori, 'Effectiveness of composite copper graphite
fluoride platings for promoting dropwise condensation of steam - a
Preliminary-Study,' International Communications in Heat and Mass
Transfer, vol. 21, pp. 619-627, 1994.
[17] A. K. Das, H. P. Kilty, P. J. Marto, A. Kumar, and G. B. Andeen, 'Dropwise
condensation of steam on horizontal corrugated tubes using an organic self-
assembled monolayer coating,' Journal of Enhanced Heat Transfer, vol. 7, pp.
109-123, 2000.
[18] P. Roach, N. J. Shirtcliffe, and M. I. Newton, 'Progess in superhydrophobic
surface development,' Soft Matter, vol. 4, pp. 224-240, 2008.
[19] C. H. Chen, Q. J. Cai, C. L. Tsai, C. L. Chen, G. Y. Xiong, Y. Yu, and Z. F.
Ren, 'Dropwise condensation on superhydrophobic surfaces with two-tier
roughness,' Applied Physics Letters, vol. 90, 173108, 2007.
[20] Y. T. Cheng, D. E. Rodak, C. A. Wong, and C. A. Hayden, 'Effects of micro-
and nano-structures on the self-cleaning behaviour of lotus leaves,'
Nanotechnology, vol. 17, pp. 1359-1362, 2006.
[21] I. Orkan Ucar and H. Y. Erbil, 'Droplet condensation on polymer surfaces: A
review,' Turkish Journal of Chemistry, vol. 37, pp. 643-674, 2013.
[22] C. Dorrer and J. Ruhe, 'Advancing and receding motion of droplets on
ultrahydrophobic post surfaces,' Langmuir, vol. 22, pp. 7652-7657, 2006.
[23] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu,
L. Jiang, and D. B. Zhu, 'Super-hydrophobic surfaces: From natural to
artificial,' Advanced Materials, vol. 14, pp. 1857-1860, 2002.
[24] D. Oner and T. J. McCarthy, 'Ultrahydrophobic surfaces. Effects of
topography length scales on wettability,' Langmuir, vol. 16, pp. 7777-7782,
2000.
[25] J. Bravo, L. Zhai, Z. Z. Wu, R. E. Cohen, and M. F. Rubner, 'Transparent
superhydrophobic films based on silica nanoparticles,' Langmuir, vol. 23, pp.
7293-7298, 2007.
[26] A. V. Rao, S. S. Latthe, S. A. Mahadik, and C. Kappenstein, 'Mechanically
stable and corrosion resistant superhydrophobic sol-gel coatings on copper
substrate,' Applied Surface Science, vol. 257, pp. 5772-5776, 2011.
[27] S. Vemuri and K. J. Kim, 'An experimental and theoretical study on the
concept of dropwise condensation,' International Journal of Heat and Mass
Transfer, vol. 49, pp. 649-657, 2006.
[28] S. Vemuri, K. J. Kim, B. D. Wood, S. Govindaraju, and T. W. Bell, 'Long term
testing for dropwise condensation using self-assembled monolayer coatings of
n-octadecyl mercaptan,' Applied Thermal Engineering, vol. 26, pp. 421-429,
2006.
[29] A. T. Paxson, J. L. Yague, K. K. Gleason, and K. K. Varanasi, 'Stable
dropwise condensation for enhancing heat transfer via the initiated chemical
vapor deposition (iCVD) of grafted polymer films,' Advanced Materials, vol.
26, pp. 418-423, 2014.
[30] R. D. Narhe and D. A. Beysens, 'Growth dynamics of water drops on a
square-pattern rough hydrophobic surface,' Langmuir, vol. 23, pp. 6486-6489,
2007.
[31] C. Dorrer and J. Ruhe, 'Condensation and wetting transitions on
microstructured ultrahydrophobic surfaces,' Langmuir, vol. 23, pp. 3820-3824,
2007.
[32] C. Dorrer and J. Ruhe, 'Some thoughts on superhydrophobic wetting,' Soft
Matter, vol. 5, pp. 51-61, 2009.
[33] Y. T. Cheng and D. E. Rodak, 'Is the lotus leaf superhydrophobic?,' Applied
Physics Letters, vol. 86, 144101, 2005.
[34] C. P. Migliaccio, 'Resonance-induced condensate shedding for high-efficiency
heat transfer,' International Journal of Heat and Mass Transfer, vol. 79, pp.
720-726, 2014.
[35] W. Lei, Z. H. Jia, J. C. He, T. M. Cai, and G. Wang, 'Vibration-induced
Wenzel-Cassie wetting transition on microstructured hydrophobic surfaces,'
Applied Physics Letters, vol. 104, 181601, 2014.
[36] E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, 'Resonance Cassie-
Wenzel wetting transition for horizontally vibrated drops deposited on a rough
surface,' Langmuir, vol. 23, pp. 12217-12221, 2007.
[37] J. B. Boreyko and C. H. Chen, 'Restoring Superhydrophobicity of Lotus
Leaves with Vibration-Induced Dewetting,' Physical Review Letters, vol. 103,
174502, 2009.
[38] J. B. Boreyko and C. H. Chen, 'Self-propelled dropwise condensate on
superhydrophobic surfaces,' Physical Review Letters, vol. 103, 184501, 2009.
[39] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang,
'Jumping-droplet-enhanced condensation on scalable superhydrophobic
nanostructured surfaces,' Nano Letters, vol. 13, pp. 179-187, 2013.
[40] J. T. Cheng, A. Vandadi, and C. L. Chen, 'Condensation heat transfer on two-
tier superhydrophobic surfaces,' Applied Physics Letters, vol. 101, 131909,
2012.
[41] K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. J. Scott, W.
Jones, C. L. Hao, S. H. Yao, and Z. K. Wang, 'How nanorough is rough
enough to make a surface superhydrophobic during water condensation?,' Soft
Matter, vol. 8, pp. 8786-8794, 2012.
[42] R. Enright, N. Miljkovic, A. Al-Obeidi, C. V. Thompson, and E. N. Wang,
'Condensation on superhydrophobic surfaces: the role of local energy barriers
and structure length scale,' Langmuir, vol. 28, pp. 14424-14432, 2012.
[43] R. Xiao, N. Miljkovic, R. Enright, and E. N. Wang, 'Immersion condensation
on oil-infused heterogeneous surfaces for enhanced heat transfer,' Scientific
Reports, vol. 3, 1988, 2013.
[44] K. K. Varanasi, M. Hsu, N. Bhate, W. S. Yang, and T. Deng, 'Spatial control in
the heterogeneous nucleation of water,' Applied Physics Letters, vol. 95,
094101, 2009.
[45] C. W. Lo, C. C. Wang, and M. C. Lu, 'Spatial control of heterogeneous
nucleation on the superhydrophobic nanowire array,' Advanced Functional
Materials, vol. 24, pp. 1211-1217, 2014.
[46] A. R. Parker and C. R. Lawrence, 'Water capture by a desert beetle,' Nature,
vol. 414, pp. 33-34, 2001.
[47] S. S. Beaini and V. P. Carey, 'Strategies for developing surfaces to enhance
dropwise condensation: exploring contact angles, droplet sizes, and patterning
surfaces,' Journal of Enhanced Heat Transfer, vol. 20, pp. 33-42, 2013.
[48] A. Chatterjee, M. M. Derby, Y. Peles, and M. K. Jensen, 'Enhancement of
condensation heat transfer with patterned surfaces,' International Journal of
Heat and Mass Transfer, vol. 71, pp. 675-681, 2014.
[49] A. M. Macner, S. Daniel, and P. H. Steen, 'Condensation on surface energy
gradient shifts drop size distribution toward small drops,' Langmuir, vol. 30,
pp. 1788-1798, 2014.
[50] C. C. Hsu, T. W. Su, and P. H. Chen, 'Pool boiling of nanoparticle-modified
surface with interlaced wettability,' Nanoscale Research Letters, vol. 7, 259,
2012.
[51] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, 'Analysis of
condensation heat transfer enhancement with dropwise-filmwise hybrid
surface: Droplet sizes effect,' International Journal of Heat and Mass
Transfer, vol. 77, pp. 785-794, 2014.
[52] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, 'Experimental
investigation on steam condensation heat transfer enhancement with vertically
patterned hydrophobic-hydrophilic hybrid surfaces,' International Journal of
Heat and Mass Transfer, vol. 83, pp. 27-38, 2015.
[53] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis,
'Enhancing dropwise condensation through bioinspired wettability
patterning,' Langmuir, vol. 30, pp. 13103-13115, 2014.
[54] G. Koch, D. C. Zhang, and A. Leipertz, 'Condensation of steam on the surface
of hard coated copper discs,' Heat and Mass Transfer, vol. 32, pp. 149-156,
1997.
[55] R. W. Bonner, 'Dropwise condensation on surfaces with graded
hydrophobicity,' Ht2009: Proceedings of the ASME Summer Heat Transfer,
Vol 3, pp. 491-495, 2009.
[56] J. B. Boreyko, Y. J. Zhao, and C. H. Chen, 'Planar jumping-drop thermal
diodes,' Applied Physics Letters, vol. 99, 234105, 2011.
[57] J. B. Boreyko and C. H. Chen, 'Vapor chambers with jumping-drop liquid
return from superhydrophobic condensers,' International Journal of Heat and
Mass Transfer, vol. 61, pp. 409-418, 2013.
[58] R. N. Wenzel, 'Resistance of solid surfaces to wetting by water,' Industrial
and Engineering Chemistry, vol. 28, pp. 988-994, 1936.
[59] A. Lafuma and D. Quere, 'Superhydrophobic states,' Nature Materials, vol. 2,
pp. 457-460, 2003.
[60] A. B. D. Cassie and S. Baxter, 'Wettability of porous surfaces.,' Transactions
of the Faraday Society, vol. 40, pp. 0546-0550, 1944.
[61] J. Bico, U. Thiele, and D. Quere, 'Wetting of textured surfaces,' Colloids and
Surfaces a-Physicochemical and Engineering Aspects, vol. 206, pp. 41-46,
2002.
[62] L. C. Gao and T. J. McCarthy, 'How Wenzel and Cassie were wrong,'
Langmuir, vol. 23, pp. 3762-3765, 2007.
[63] D. Quere, 'Wetting and roughness,' Annual Review of Materials Research,
vol. 38, pp. 71-99, 2008.
[64] N. Miljkovic, R. Enright, and E. N. Wang, 'Effect of droplet morphology on
growth dynamics and heat transfer during condensation on superhydrophobic
nanostructured surfaces,' ACS Nano, vol. 6, pp. 1776-1785, 2012.
[65] J. L. Viovy, D. Beysens, and C. M. Knobler, 'Scaling description for the
growth of condensation patterns on surfaces,' Physical Review A, vol. 37, pp.
4965-4970, 1988.
[66] D. Beysens, 'The formation of dew,' Atmospheric Research, vol. 39, pp. 215-
237, 1995.
[67] R. D. Narhe and D. A. Beysens, 'Nucleation and growth on a
superhydrophobic grooved surface,' Physical Review Letters, vol. 93, 076103,
2004.
[68] R. D. Narhe and D. A. Beysens, 'Water condensation on a super-hydrophobic
spike surface,' Europhysics Letters, vol. 75, pp. 98-104, 2006.
[69] D. Beysens and C. M. Knobler, 'Growth of breath figures,' Physical Review
Letters, vol. 57, pp. 1433-1436, 1986.
[70] D. Fritter, C. M. Knobler, and D. A. Beysens, 'Experiments and simulation of
the growth of droplets on a surface (Breath Figures),' Physical Review A, vol.
43, pp. 2858-2869, 1991.
[71] C. W. Lo, C. C. Wang, and M. C. Lu, 'Scale effect on dropwise condensation
on superhydrophobic surfaces,' ACS Applied Materials & Interfaces, vol. 6,
pp. 14353-14359, 2014.
[72] Minkowyc.W. J. and E. M. Sparrow, 'Condensation heat transfer in presence
of noncondensables interfacial resistance superheating variable properties and
diffusion,' International Journal of Heat and Mass Transfer, vol. 9, pp. 1125-
1144, 1966.
[73] E. M. Sparrow, Minkowyc.W. J., and M. Saddy, 'Forced convection
condensation in presence of noncondensables and interfacial resistance,'
International Journal of Heat and Mass Transfer, vol. 10, pp. 1829-1845,
1967.
[74] S. K. Park, M. H. Kim, and K. J. Yoo, 'Effects of a wavy interface on steam-
air condensation on a vertical surface,' International Journal of Multiphase
Flow, vol. 23, pp. 1031-1042, 1997.
[75] X. H. Ma, X. D. Zhou, Z. Lan, Y. M. Li, and Y. Zhang, 'Condensation heat
transfer enhancement in the presence of non-condensable gas using the
interfacial effect of dropwise condensation,' International Journal of Heat and
Mass Transfer, vol. 51, pp. 1728-1737, 2008.
[76] I. K. Huhtiniemi and M. L. Corradini, 'Condensation in the presence of
noncondensable gases,' Nuclear Engineering and Design, vol. 141, pp. 429-
446, 1993.
[77] J. R. Taylor, An introduction to error analysis: the study of uncertainties in
physical measurements , 2nd ed. Sausalito, California: University Science
Books, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51166-
dc.description.abstract本研究欲探討以超疏水為基底之交錯濕潤性表面,對含有空氣之水蒸氣冷
凝熱傳之影響。分別在水平向下及垂直的冷凝面,進行不同改質條紋配置之實驗。實驗結果顯示,表面條紋配置、表面方向、表面過冷度,以及不可凝結氣體均會對冷凝熱傳產生影響。交錯濕潤性表面在水平及垂直時,分別呈現相反的熱傳趨勢。對水平冷凝面而言,改質條紋越寬,會有越好的熱傳增強效果;反之,改質條紋較細的交錯濕潤性表面,在表面垂直時熱傳效果較佳。此外,交錯濕潤性表面有助於擾動由不可凝結氣體產生之邊界層,進一步提升熱傳,且此效益在冷凝面沒有重力滑落效應,也就是水平時,更為顯著。此研究顯示,若是能仔細考量及設計表面條紋的配置及其他操作條件,交錯濕潤性表面的冷凝熱傳性能將能進一步提升。
zh_TW
dc.description.abstractThis study investigated the effect of surfaces with superhydrophobicity-based interlaced wettability on steam–air mixture condensation. Experiments were conducted on various types of surface with different modified strip widths under downward-facing horizontal and vertical surface orientations. The experimental results revealed that the condensation heat-transfer on surfaces with interlaced wettability could be highly influenced by the surface pattern, surface orientation, wall subcooling, and the existence of NCGs. Opposite trends of heat transfer were observed under different
surface orientation. The experimental data of horizontal surfaces showed that the heat transfer can be enhanced when the width of the modified surperhydrophobic strips
getting wider, while the narrower modified strips would increase the heat transfer more efficiently for vertical surfaces. In addition, a two-dimensional disturbance of the boundary layer imposed by NCGs is proposed, holding the potential to further heat transfer enhancement for steam-air condensation, especially in the situation without the sweeping of condensates under the gravity force. Such the facts imply that the potential of the interlaced surface could be further improved and applied if considering both the surface pattern and the operating conditions carefully.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:26:32Z (GMT). No. of bitstreams: 1
ntu-104-R02522303-1.pdf: 4486254 bytes, checksum: 31d27f4cdf470c4c535fdf0dcc415cce (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContent
Chapter 1. Introduction......................................................................................1
1.1 Motivation..............................................................................................1
1.2 Literature Review on condensation heat transfer enhancement ............2
1.3 Purpose...................................................................................................5
Chapter 2. Theory .............................................................................................15
2.1 Surface Wettability and Surface Modification.....................................15
2.1.1 Wettability....................................................................................15
2.1.1.1 Young’s Equation..................................................................16
2.1.1.2 Wenzel Model .......................................................................16
2.1.1.3 Cassie-Baxter Model.............................................................17
2.1.1.4 Recent Progress on Wetting ..................................................17
2.1.2 Sol-gel Method.............................................................................22
2.2 Condensation Heat Transfer.................................................................24
2.2.1 Stages of Condensation................................................................24
2.2.1.1 Heterogeneous Nucleation....................................................24
2.2.1.2 Growth and Coalescence.......................................................25
2.2.1.3 Removal ................................................................................26
2.2.2 Heat Transfer Model ....................................................................28
2.2.2.1 Condensation on Hybrid Surface ..........................................28
2.2.2.2 Estimation of Heat Transfer Performance on the Interlaced
Surface .............................................................................................30
2.2.2.3 Effect of Non-condensable gas.............................................31
Chapter 3. Experiments....................................................................................35
3.1 Surface Modification ...........................................................................35
3.1.1 Chemicals and Material ...............................................................35
3.1.2 Equipment....................................................................................35
3.1.3 Procedures....................................................................................36
3.2 Thermal System ...................................................................................42
3.2.1 Equipment....................................................................................42
3.2.2 Setup and Procedures...................................................................42
3.3 Uncertainty Estimation ........................................................................51
Chapter 4. Results and Discussion...................................................................55
4.1 Effect of Surface Orientation on Homogeneous Condensing Surfaces...55
4.2 Heat Transfer Enhancement on Surfaces with Interlaced Wettability .58
4.2.1 Droplets morphology ...................................................................58
4.2.2 Effect of the surface pattern and surface orientation ...................62
4.2.3 Effect of Wall-subcooling ............................................................72
Chapter 5. Conclusions and Future Prospects ...............................................75
5.1 Conclusions..........................................................................................75
5.2 Future Prospects...................................................................................76
Bibliography ...........................................................................................................79
dc.language.isoen
dc.title交錯潤濕性表面對冷凝熱傳之增強zh_TW
dc.titleCondensation Heat Transfer Enhancement on Surfaces with Interlaced Wettabilityen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑤明,楊馥菱
dc.subject.keyword冷凝熱傳,表面改質,交錯濕潤性,zh_TW
dc.subject.keywordcondensation heat transfer,surface modification,interlaced wettability,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201600129
dc.rights.note有償授權
dc.date.accepted2016-03-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved