請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51166
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳炳煇 | |
dc.contributor.author | You-An Lee | en |
dc.contributor.author | 李祐安 | zh_TW |
dc.date.accessioned | 2021-06-15T13:26:32Z | - |
dc.date.available | 2016-04-15 | |
dc.date.copyright | 2016-04-15 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2016-03-21 | |
dc.identifier.citation | Bibliography
[1] H. G. Andrews, E. A. Eccles, W. C. E. Schofield, and J. P. S. Badyal, 'Three- dimensional hierarchical structures for fog harvesting,' Langmuir, vol. 27, pp. 3798-3802, 2011. [2] A. Lee, M. W. Moon, H. Lim, W. D. Kim, and H. Y. Kim, 'Water harvest via dewing,' Langmuir, vol. 28, pp. 10183-10191, 2012. [3] A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, 'Advances in seawater desalination technologies,' Desalination, vol. 221, pp. 47-69, 2008. [4] T. Humplik, J. Lee, S. C. O'Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M. A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, 'Nanostructured materials for water desalination,' Nanotechnology, vol. 22, 292001, 2011. [5] J. M. Beer, 'High efficiency electric power generation: The environmental role,' Progress in Energy and Combustion Science, vol. 33, pp. 107-134, 2007. [6] R. J. McGlen, R. Jachuck, and S. Lin, 'Integrated thermal management techniques for high power electronic devices,' Applied Thermal Engineering, vol. 24, pp. 1143-1156, 2004. [7] T. B. Peters, M. McCarthy, J. Allison, F. A. Dominguez-Espinosa, D. Jenicek, H. A. Kariya, W. L. Staats, J. G. Brisson, J. H. Lang, and E. N. Wang, 'Design of an Integrated Loop Heat Pipe Air-Cooled Heat Exchanger for High Performance Electronics,' IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 2, pp. 1637-1648, 2012. [8] W. Nusselt, 'The surface condensation of water vapour.,' Zeitschrift Des Vereines Deutscher Ingenieure, vol. 60, pp. 541-546, 1916. [9] E. Schmidt, W. Schurig, and W. Sellschopp, 'Condensation of water vapour in film- and drop form,' Zeitschrift Des Vereines Deutscher Ingenieure, vol. 74, pp. 544-544, 1930. [10] J. W. Rose, 'Dropwise condensation theory and experiment: a review,' Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, vol. 216, pp. 115-128, 2002. [11] D. W. Tanner, D. West, D. Pope, and C. J. Potter, 'Promotion of dropwise condensation by monolayers of radioactive fatty acids .I. stearic acid on copper surfaces,' Journal of Applied Chemistry, vol. 14, pp. 361-369, 1964. [12] M. P. Bonnar, B. M. Burnside, J. Christie, E. J. Sceal, C. E. Troupe, and J. I. B. Wilson, 'Hydrophobic coatings from plasma polymerized vinyltrimethylsilane,' Chemical Vapor Deposition, vol. 5, pp. 117-125, 1999. [13] D. W. Woodruff and J. W. Westwater, 'Steam condensation on electroplated gold - effect of plating thickness,' International Journal of Heat and Mass Transfer, vol. 22, pp. 629-632, 1979. [14] G. A. Oneill and J. W. Westwater, 'Dropwise condensation of steam on electroplated silver surfaces,' International Journal of Heat and Mass Transfer, vol. 27, pp. 1539-1549, 1984. [15] K. M. Holden, A. S. Wanniarachchi, P. J. Marto, D. H. Boone, and J. W. Rose, 'The use of organic coatings to promote dropwise condensation of steam,' Journal of Heat Transfer-Transactions of the ASME, vol. 109, pp. 768-774, 1987. [16] A. Taniguchi and Y. H. Mori, 'Effectiveness of composite copper graphite fluoride platings for promoting dropwise condensation of steam - a Preliminary-Study,' International Communications in Heat and Mass Transfer, vol. 21, pp. 619-627, 1994. [17] A. K. Das, H. P. Kilty, P. J. Marto, A. Kumar, and G. B. Andeen, 'Dropwise condensation of steam on horizontal corrugated tubes using an organic self- assembled monolayer coating,' Journal of Enhanced Heat Transfer, vol. 7, pp. 109-123, 2000. [18] P. Roach, N. J. Shirtcliffe, and M. I. Newton, 'Progess in superhydrophobic surface development,' Soft Matter, vol. 4, pp. 224-240, 2008. [19] C. H. Chen, Q. J. Cai, C. L. Tsai, C. L. Chen, G. Y. Xiong, Y. Yu, and Z. F. Ren, 'Dropwise condensation on superhydrophobic surfaces with two-tier roughness,' Applied Physics Letters, vol. 90, 173108, 2007. [20] Y. T. Cheng, D. E. Rodak, C. A. Wong, and C. A. Hayden, 'Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves,' Nanotechnology, vol. 17, pp. 1359-1362, 2006. [21] I. Orkan Ucar and H. Y. Erbil, 'Droplet condensation on polymer surfaces: A review,' Turkish Journal of Chemistry, vol. 37, pp. 643-674, 2013. [22] C. Dorrer and J. Ruhe, 'Advancing and receding motion of droplets on ultrahydrophobic post surfaces,' Langmuir, vol. 22, pp. 7652-7657, 2006. [23] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu, L. Jiang, and D. B. Zhu, 'Super-hydrophobic surfaces: From natural to artificial,' Advanced Materials, vol. 14, pp. 1857-1860, 2002. [24] D. Oner and T. J. McCarthy, 'Ultrahydrophobic surfaces. Effects of topography length scales on wettability,' Langmuir, vol. 16, pp. 7777-7782, 2000. [25] J. Bravo, L. Zhai, Z. Z. Wu, R. E. Cohen, and M. F. Rubner, 'Transparent superhydrophobic films based on silica nanoparticles,' Langmuir, vol. 23, pp. 7293-7298, 2007. [26] A. V. Rao, S. S. Latthe, S. A. Mahadik, and C. Kappenstein, 'Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate,' Applied Surface Science, vol. 257, pp. 5772-5776, 2011. [27] S. Vemuri and K. J. Kim, 'An experimental and theoretical study on the concept of dropwise condensation,' International Journal of Heat and Mass Transfer, vol. 49, pp. 649-657, 2006. [28] S. Vemuri, K. J. Kim, B. D. Wood, S. Govindaraju, and T. W. Bell, 'Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan,' Applied Thermal Engineering, vol. 26, pp. 421-429, 2006. [29] A. T. Paxson, J. L. Yague, K. K. Gleason, and K. K. Varanasi, 'Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films,' Advanced Materials, vol. 26, pp. 418-423, 2014. [30] R. D. Narhe and D. A. Beysens, 'Growth dynamics of water drops on a square-pattern rough hydrophobic surface,' Langmuir, vol. 23, pp. 6486-6489, 2007. [31] C. Dorrer and J. Ruhe, 'Condensation and wetting transitions on microstructured ultrahydrophobic surfaces,' Langmuir, vol. 23, pp. 3820-3824, 2007. [32] C. Dorrer and J. Ruhe, 'Some thoughts on superhydrophobic wetting,' Soft Matter, vol. 5, pp. 51-61, 2009. [33] Y. T. Cheng and D. E. Rodak, 'Is the lotus leaf superhydrophobic?,' Applied Physics Letters, vol. 86, 144101, 2005. [34] C. P. Migliaccio, 'Resonance-induced condensate shedding for high-efficiency heat transfer,' International Journal of Heat and Mass Transfer, vol. 79, pp. 720-726, 2014. [35] W. Lei, Z. H. Jia, J. C. He, T. M. Cai, and G. Wang, 'Vibration-induced Wenzel-Cassie wetting transition on microstructured hydrophobic surfaces,' Applied Physics Letters, vol. 104, 181601, 2014. [36] E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, 'Resonance Cassie- Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface,' Langmuir, vol. 23, pp. 12217-12221, 2007. [37] J. B. Boreyko and C. H. Chen, 'Restoring Superhydrophobicity of Lotus Leaves with Vibration-Induced Dewetting,' Physical Review Letters, vol. 103, 174502, 2009. [38] J. B. Boreyko and C. H. Chen, 'Self-propelled dropwise condensate on superhydrophobic surfaces,' Physical Review Letters, vol. 103, 184501, 2009. [39] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang, 'Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces,' Nano Letters, vol. 13, pp. 179-187, 2013. [40] J. T. Cheng, A. Vandadi, and C. L. Chen, 'Condensation heat transfer on two- tier superhydrophobic surfaces,' Applied Physics Letters, vol. 101, 131909, 2012. [41] K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. J. Scott, W. Jones, C. L. Hao, S. H. Yao, and Z. K. Wang, 'How nanorough is rough enough to make a surface superhydrophobic during water condensation?,' Soft Matter, vol. 8, pp. 8786-8794, 2012. [42] R. Enright, N. Miljkovic, A. Al-Obeidi, C. V. Thompson, and E. N. Wang, 'Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale,' Langmuir, vol. 28, pp. 14424-14432, 2012. [43] R. Xiao, N. Miljkovic, R. Enright, and E. N. Wang, 'Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer,' Scientific Reports, vol. 3, 1988, 2013. [44] K. K. Varanasi, M. Hsu, N. Bhate, W. S. Yang, and T. Deng, 'Spatial control in the heterogeneous nucleation of water,' Applied Physics Letters, vol. 95, 094101, 2009. [45] C. W. Lo, C. C. Wang, and M. C. Lu, 'Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array,' Advanced Functional Materials, vol. 24, pp. 1211-1217, 2014. [46] A. R. Parker and C. R. Lawrence, 'Water capture by a desert beetle,' Nature, vol. 414, pp. 33-34, 2001. [47] S. S. Beaini and V. P. Carey, 'Strategies for developing surfaces to enhance dropwise condensation: exploring contact angles, droplet sizes, and patterning surfaces,' Journal of Enhanced Heat Transfer, vol. 20, pp. 33-42, 2013. [48] A. Chatterjee, M. M. Derby, Y. Peles, and M. K. Jensen, 'Enhancement of condensation heat transfer with patterned surfaces,' International Journal of Heat and Mass Transfer, vol. 71, pp. 675-681, 2014. [49] A. M. Macner, S. Daniel, and P. H. Steen, 'Condensation on surface energy gradient shifts drop size distribution toward small drops,' Langmuir, vol. 30, pp. 1788-1798, 2014. [50] C. C. Hsu, T. W. Su, and P. H. Chen, 'Pool boiling of nanoparticle-modified surface with interlaced wettability,' Nanoscale Research Letters, vol. 7, 259, 2012. [51] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, 'Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect,' International Journal of Heat and Mass Transfer, vol. 77, pp. 785-794, 2014. [52] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, 'Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces,' International Journal of Heat and Mass Transfer, vol. 83, pp. 27-38, 2015. [53] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis, 'Enhancing dropwise condensation through bioinspired wettability patterning,' Langmuir, vol. 30, pp. 13103-13115, 2014. [54] G. Koch, D. C. Zhang, and A. Leipertz, 'Condensation of steam on the surface of hard coated copper discs,' Heat and Mass Transfer, vol. 32, pp. 149-156, 1997. [55] R. W. Bonner, 'Dropwise condensation on surfaces with graded hydrophobicity,' Ht2009: Proceedings of the ASME Summer Heat Transfer, Vol 3, pp. 491-495, 2009. [56] J. B. Boreyko, Y. J. Zhao, and C. H. Chen, 'Planar jumping-drop thermal diodes,' Applied Physics Letters, vol. 99, 234105, 2011. [57] J. B. Boreyko and C. H. Chen, 'Vapor chambers with jumping-drop liquid return from superhydrophobic condensers,' International Journal of Heat and Mass Transfer, vol. 61, pp. 409-418, 2013. [58] R. N. Wenzel, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry, vol. 28, pp. 988-994, 1936. [59] A. Lafuma and D. Quere, 'Superhydrophobic states,' Nature Materials, vol. 2, pp. 457-460, 2003. [60] A. B. D. Cassie and S. Baxter, 'Wettability of porous surfaces.,' Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944. [61] J. Bico, U. Thiele, and D. Quere, 'Wetting of textured surfaces,' Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 206, pp. 41-46, 2002. [62] L. C. Gao and T. J. McCarthy, 'How Wenzel and Cassie were wrong,' Langmuir, vol. 23, pp. 3762-3765, 2007. [63] D. Quere, 'Wetting and roughness,' Annual Review of Materials Research, vol. 38, pp. 71-99, 2008. [64] N. Miljkovic, R. Enright, and E. N. Wang, 'Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces,' ACS Nano, vol. 6, pp. 1776-1785, 2012. [65] J. L. Viovy, D. Beysens, and C. M. Knobler, 'Scaling description for the growth of condensation patterns on surfaces,' Physical Review A, vol. 37, pp. 4965-4970, 1988. [66] D. Beysens, 'The formation of dew,' Atmospheric Research, vol. 39, pp. 215- 237, 1995. [67] R. D. Narhe and D. A. Beysens, 'Nucleation and growth on a superhydrophobic grooved surface,' Physical Review Letters, vol. 93, 076103, 2004. [68] R. D. Narhe and D. A. Beysens, 'Water condensation on a super-hydrophobic spike surface,' Europhysics Letters, vol. 75, pp. 98-104, 2006. [69] D. Beysens and C. M. Knobler, 'Growth of breath figures,' Physical Review Letters, vol. 57, pp. 1433-1436, 1986. [70] D. Fritter, C. M. Knobler, and D. A. Beysens, 'Experiments and simulation of the growth of droplets on a surface (Breath Figures),' Physical Review A, vol. 43, pp. 2858-2869, 1991. [71] C. W. Lo, C. C. Wang, and M. C. Lu, 'Scale effect on dropwise condensation on superhydrophobic surfaces,' ACS Applied Materials & Interfaces, vol. 6, pp. 14353-14359, 2014. [72] Minkowyc.W. J. and E. M. Sparrow, 'Condensation heat transfer in presence of noncondensables interfacial resistance superheating variable properties and diffusion,' International Journal of Heat and Mass Transfer, vol. 9, pp. 1125- 1144, 1966. [73] E. M. Sparrow, Minkowyc.W. J., and M. Saddy, 'Forced convection condensation in presence of noncondensables and interfacial resistance,' International Journal of Heat and Mass Transfer, vol. 10, pp. 1829-1845, 1967. [74] S. K. Park, M. H. Kim, and K. J. Yoo, 'Effects of a wavy interface on steam- air condensation on a vertical surface,' International Journal of Multiphase Flow, vol. 23, pp. 1031-1042, 1997. [75] X. H. Ma, X. D. Zhou, Z. Lan, Y. M. Li, and Y. Zhang, 'Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation,' International Journal of Heat and Mass Transfer, vol. 51, pp. 1728-1737, 2008. [76] I. K. Huhtiniemi and M. L. Corradini, 'Condensation in the presence of noncondensable gases,' Nuclear Engineering and Design, vol. 141, pp. 429- 446, 1993. [77] J. R. Taylor, An introduction to error analysis: the study of uncertainties in physical measurements , 2nd ed. Sausalito, California: University Science Books, 1997. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51166 | - |
dc.description.abstract | 本研究欲探討以超疏水為基底之交錯濕潤性表面,對含有空氣之水蒸氣冷
凝熱傳之影響。分別在水平向下及垂直的冷凝面,進行不同改質條紋配置之實驗。實驗結果顯示,表面條紋配置、表面方向、表面過冷度,以及不可凝結氣體均會對冷凝熱傳產生影響。交錯濕潤性表面在水平及垂直時,分別呈現相反的熱傳趨勢。對水平冷凝面而言,改質條紋越寬,會有越好的熱傳增強效果;反之,改質條紋較細的交錯濕潤性表面,在表面垂直時熱傳效果較佳。此外,交錯濕潤性表面有助於擾動由不可凝結氣體產生之邊界層,進一步提升熱傳,且此效益在冷凝面沒有重力滑落效應,也就是水平時,更為顯著。此研究顯示,若是能仔細考量及設計表面條紋的配置及其他操作條件,交錯濕潤性表面的冷凝熱傳性能將能進一步提升。 | zh_TW |
dc.description.abstract | This study investigated the effect of surfaces with superhydrophobicity-based interlaced wettability on steam–air mixture condensation. Experiments were conducted on various types of surface with different modified strip widths under downward-facing horizontal and vertical surface orientations. The experimental results revealed that the condensation heat-transfer on surfaces with interlaced wettability could be highly influenced by the surface pattern, surface orientation, wall subcooling, and the existence of NCGs. Opposite trends of heat transfer were observed under different
surface orientation. The experimental data of horizontal surfaces showed that the heat transfer can be enhanced when the width of the modified surperhydrophobic strips getting wider, while the narrower modified strips would increase the heat transfer more efficiently for vertical surfaces. In addition, a two-dimensional disturbance of the boundary layer imposed by NCGs is proposed, holding the potential to further heat transfer enhancement for steam-air condensation, especially in the situation without the sweeping of condensates under the gravity force. Such the facts imply that the potential of the interlaced surface could be further improved and applied if considering both the surface pattern and the operating conditions carefully. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:26:32Z (GMT). No. of bitstreams: 1 ntu-104-R02522303-1.pdf: 4486254 bytes, checksum: 31d27f4cdf470c4c535fdf0dcc415cce (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Content
Chapter 1. Introduction......................................................................................1 1.1 Motivation..............................................................................................1 1.2 Literature Review on condensation heat transfer enhancement ............2 1.3 Purpose...................................................................................................5 Chapter 2. Theory .............................................................................................15 2.1 Surface Wettability and Surface Modification.....................................15 2.1.1 Wettability....................................................................................15 2.1.1.1 Young’s Equation..................................................................16 2.1.1.2 Wenzel Model .......................................................................16 2.1.1.3 Cassie-Baxter Model.............................................................17 2.1.1.4 Recent Progress on Wetting ..................................................17 2.1.2 Sol-gel Method.............................................................................22 2.2 Condensation Heat Transfer.................................................................24 2.2.1 Stages of Condensation................................................................24 2.2.1.1 Heterogeneous Nucleation....................................................24 2.2.1.2 Growth and Coalescence.......................................................25 2.2.1.3 Removal ................................................................................26 2.2.2 Heat Transfer Model ....................................................................28 2.2.2.1 Condensation on Hybrid Surface ..........................................28 2.2.2.2 Estimation of Heat Transfer Performance on the Interlaced Surface .............................................................................................30 2.2.2.3 Effect of Non-condensable gas.............................................31 Chapter 3. Experiments....................................................................................35 3.1 Surface Modification ...........................................................................35 3.1.1 Chemicals and Material ...............................................................35 3.1.2 Equipment....................................................................................35 3.1.3 Procedures....................................................................................36 3.2 Thermal System ...................................................................................42 3.2.1 Equipment....................................................................................42 3.2.2 Setup and Procedures...................................................................42 3.3 Uncertainty Estimation ........................................................................51 Chapter 4. Results and Discussion...................................................................55 4.1 Effect of Surface Orientation on Homogeneous Condensing Surfaces...55 4.2 Heat Transfer Enhancement on Surfaces with Interlaced Wettability .58 4.2.1 Droplets morphology ...................................................................58 4.2.2 Effect of the surface pattern and surface orientation ...................62 4.2.3 Effect of Wall-subcooling ............................................................72 Chapter 5. Conclusions and Future Prospects ...............................................75 5.1 Conclusions..........................................................................................75 5.2 Future Prospects...................................................................................76 Bibliography ...........................................................................................................79 | |
dc.language.iso | en | |
dc.title | 交錯潤濕性表面對冷凝熱傳之增強 | zh_TW |
dc.title | Condensation Heat Transfer Enhancement on Surfaces with Interlaced Wettability | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳瑤明,楊馥菱 | |
dc.subject.keyword | 冷凝熱傳,表面改質,交錯濕潤性, | zh_TW |
dc.subject.keyword | condensation heat transfer,surface modification,interlaced wettability, | en |
dc.relation.page | 85 | |
dc.identifier.doi | 10.6342/NTU201600129 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-03-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。