Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51120
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡豐羽
dc.contributor.authorPo-Han Chenen
dc.contributor.author陳柏翰zh_TW
dc.date.accessioned2021-06-15T13:25:34Z-
dc.date.available2019-06-11
dc.date.copyright2016-06-11
dc.date.issued2016
dc.date.submitted2016-05-05
dc.identifier.citation[1] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology, vol. 24, no. 45, p. 452001, Nov. 2013.
[2] C. J. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells, vol. 97, pp. 14–21, 2012.
[3] J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the Nanoscale:  The Case of Silver Nanowires and Nanoparticles,” Chem. Mater., vol. 17, no. 24, pp. 6042–6052, Nov. 2005.
[4] C. Mayousse, C. Celle, A. Fraczkiewicz, and J.-P. Simonato, “Stability of silver nanowire based electrodes under environmental and electrical stresses,” Nanoscale, vol. 7, no. 5, pp. 2107–2115, Jan. 2015.
[5] R. D. Glover, J. M. Miller, and J. E. Hutchison, “Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment,” ACS Nano, vol. 5, no. 11, pp. 8950–8957, Nov. 2011.
[6] Y. Ahn, Y. Jeong, and Y. Lee, “Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide,” ACS Appl. Mater. Interfaces, vol. 4, no. 12, pp. 6410–6414, Dec. 2012.
[7] J. Wang, J. Jiu, T. Sugahara, S. Nagao, M. Nogi, H. Koga, P. He, K. Suganuma, and H. Uchida, “Highly Reliable Silver Nanowire Transparent Electrode Employing Selectively Patterned Barrier Shaped by Self-Masked Photolithography,” ACS Appl. Mater. Interfaces, vol. 7, no. 41, pp. 23297–23304, Oct. 2015.
[8] Q. Zhang, Y. Di, C. M. Huard, L. J. Guo, J. Wei, and J. Guo, “Highly stable and stretchable graphene–polymer processed silver nanowires hybrid electrodes for flexible displays,” J. Mater. Chem. C, vol. 3, no. 7, pp. 1528–1536, Feb. 2015.
[9] S. Chen, L. Song, Z. Tao, X. Shao, Y. Huang, Q. Cui, and X. Guo, “Neutral-pH PEDOT: PSS as over-coating layer for stable silver nanowire flexible transparent conductive films,” Org. Electron., vol. 15, no. 12, pp. 3654–3659, 2014.
[10] D. S. Ghosh, T. L. Chen, V. Mkhitaryan, N. Formica, and V. Pruneri, “Solution processed metallic nanowire based transparent electrode capped with a multifunctional layer,” Appl. Phys. Lett., vol. 102, no. 22, p. 221111, 2013.
[11] H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J.-H. Jeong, E. Lee, J.-Y. Lee, and I. Park, “Ag@ Ni core–shell nanowire network for robust transparent electrodes against oxidation and sulfurization,” Small, vol. 10, no. 20, pp. 4171–4181, 2014.
[12] B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, “Graphene and graphene oxide and their uses in barrier polymers,” J. Appl. Polym. Sci., vol. 131, no. 1, 2014.
[13] H. H. Khaligh and I. A. Goldthorpe, “Failure of silver nanowire transparent electrodes under current flow,” Nanoscale Res. Lett., vol. 8, no. 1, p. 235, 2013.
[14] D. P. Langley, M. Lagrange, G. Giusti, C. Jiménez, Y. Bréchet, N. D. Nguyen, and D. Bellet, “Metallic nanowire networks: effects of thermal annealing on electrical resistance,” Nanoscale, vol. 6, no. 22, pp. 13535–13543, Oct. 2014.
[15] B. Stahlmecke, F.-J. M. zu Heringdorf, L. I. Chelaru, M. H. Hoegen, G. Dumpich, and K. R. Roos, “Electromigration in self-organized single-crystalline silver nanowires,” Appl. Phys. Lett., vol. 88, no. 5, p. 053122, Jan. 2006.
[16] M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, G. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology, vol. 24, no. 9, p. 095201, Mar. 2013.
[17] J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical Breakdown of Nanowires,” Nano Lett., vol. 11, no. 11, pp. 4647–4651, Nov. 2011.
[18] V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends,” J. Appl. Phys., vol. 113, no. 2, p. 021301, Jan. 2013.
[19] C.-T. Chou, P.-W. Yu, M.-H. Tseng, C.-C. Hsu, J.-J. Shyue, C.-C. Wang, and F.-Y. Tsai, “Transparent Conductive Gas-Permeation Barriers on Plastics by Atomic Layer Deposition,” Adv. Mater., vol. 25, no. 12, pp. 1750–1754, 2013.
[20] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics, vol. 8, no. 7, pp. 506–514, Jul. 2014.
[21] H. J. Snaith, “Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells,” J. Phys. Chem. Lett., vol. 4, no. 21, pp. 3623–3630, Nov. 2013.
[22] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science, vol. 338, no. 6107, pp. 643–647, Nov. 2012.
[23] D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics, vol. 8, no. 2, pp. 133–138, Feb. 2014.
[24] A. Kim, H. Lee, H.-C. Kwon, H. S. Jung, N.-G. Park, S. Jeong, and J. Moon, “Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells,” Nanoscale, vol. 8, no. 12, pp. 6308–6316, Mar. 2016.
[25] X. Dong, H. Hu, B. Lin, J. Ding, and N. Yuan, “The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures,” Chem. Commun., vol. 50, no. 92, pp. 14405–14408, Oct. 2014.
[26] Y.-Y. Lin, C.-C. Hsu, M.-H. Tseng, J.-J. Shyue, and F.-Y. Tsai, “Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition,” ACS Appl. Mater. Interfaces, vol. 7, no. 40, pp. 22610–22617, Oct. 2015.
[27] R. Zhu, C.-H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T.-B. Song, C.-C. Chen, P. S. Weiss, G. Li, and Y. Yang, “Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors,” ACS Nano, vol. 5, no. 12, pp. 9877–9882, Dec. 2011.
[28] A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano, vol. 7, no. 2, pp. 1081–1091, Feb. 2013.
[29] Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett., vol. 2, no. 2, pp. 165–168, 2002.
[30] E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater., vol. 11, no. 3, pp. 241–249, 2012.
[31] J. A. Dean and N. A. Lange, Lange’s Handbook of Chemistry. McGraw-Hill, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51120-
dc.description.abstract奈米銀線是最有潛力替代氧化銦錫的材料之一,但由銀線製成的電極有兩項重大缺點,第一為長時間環境穩定性問題,第二為長時間電流操作穩定性問題,這兩項缺點是銀線電極要作為實際應用上必須解決的問題,因此本論文主要是想利用原子層沉積技術沉積參雜鉿的氧化鋅薄膜覆蓋在奈米銀線網路上來企圖解決上述兩個缺點,這樣所製成的複合電極在光學和電性上皆有優異的表現,其中在可見光光波段550奈米處的穿透度有87.2%,電極的片電阻為26.3歐姆每單位平方,這樣的光電特性都和商用氧化銦錫特性相當。在環境穩定性上,複合電極在攝氏85度和相對溼度85%的九天加速劣化測試後,對比於原電阻,複合電極電阻僅先上升為約1.2倍;在電流操作穩定性上,複合電極在每平方公分88豪安培的電流連續操作120小時過後,輸出電壓相較原先也僅上升至1.13倍;而複合電極在作為鈣鈦礦太陽能電池元件電極表現上,電池元件效率和以氧化銦錫作為電極的元件相當。從以上結果說明了我們的方法不僅能改善奈米銀線環境穩定性和電流操作穩定性的問題,如此製成的複合電極也有其潛力能實際應用在光電產業。zh_TW
dc.description.abstractSilver nanowire is one of the most promising substitute material for indium tin oxide. However, electrode made of silver nanowires network has poor long term air stability and current operation stability, which hinder its practical application. In this thesis, to solve these problems a AgNWs-HZO composite electrode was developed by depositing ALD Hafnium-doped zinc oxide on silver nanowires film. The composite electrode showed 87.2% total transmittance at 550 nm and 26.3 Ω/□ in sheet resistance, which are comparable to commercial ITO. In addition, after 9-days storage in 85°C/85% relative humidity environment, the resistance of composite electrode was raised less than 1.2 times and after 120-hrs current operation test at 88 mA/cm2, the output voltage of composite electrode was raised only 1.13 times. Moreover, the perovskite solar cells on AgNW-HZO composite electrode showed good photovoltaic performance as much as solar cells on commercial ITO. Hence our composite electrode not only improves air stability and current operation stability of silver nanowires but also has potential to serve as transparent electrode in optoelectronic application.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:25:34Z (GMT). No. of bitstreams: 1
ntu-105-R02527034-1.pdf: 2669149 bytes, checksum: 47b666770e6a0c7b3d01ec603761502c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
Acknowledgement…………………………………………………………………..……i
Abstract (Chinese)……………………………………………………………………….ii
Abstract (English)…………………………………………………………….…………iii
Contents…………………………………………………………………………….…...iv
List of Figures…………………………………………………………………………...vi
List of Tables………………………………………………………………………......viii
Chapter 1 Introduction…………………………………………………………….…...1
1.1 Promising of silver nanowires…………………………………………………......1
1.2 Objective statement……………………………………………………………......3
Chapter 2 Literature reviews………………………………………………………......4
2.1 The air stability problem of AgNWs……………………………………….…........4
2.2 The current operation stability problem of AgNWs………………………………..7
2.3 Reasons for choosing ALD HZO and introduction to ALD system…………...…...9
2.4 Introduction to Organolead halide perovskite based solar cell……………………12
Chapter 3 Experimental detail……………………………………………………......14
3.1 Composite electrode fabrication………………………………………………….14
3.2 Perovskite solar cell fabrication…………………………………….……………15
3.3 ALD process………………………………………………………………...........17
3.4 Measurements of electrode property and device efficiency………………………19
3.4.1 Electrical properties of electrode…….………………………………………19
3.4.2 Optical properties of electrode ………………………………………………19
3.4.3 Morphology observation and element analysis………………………….......19
3.4.4 Damp heat test and current operation test measurement…………………......20
3.4.5 Measurement of solar cell device efficiency……………………………........20
Chapter 4 Results and discussion…………………………………………………......21
4.1 Function of HZO for resistance behavior of composite electrode………………...22
4.2 Optical and electric performance of composite electrode………………………...27
4.3 Air stability of composite electrode………………………………………….…...29
4.4 Current operation stability of composite electrode……………………………….33
4.5 Characteristics of perovskite solar cell on composite electrode………………......36
4.5.1 Protection ability of TiO2…………………………………………………….36
4.5.2 Perovskite solar cell device performance……………………………………37
Chapter 5 Conclusions and future works…………………………………………….39
5.1 Conclusion……………………………………………………………………….39
5.2 Future work…………………………………………...………………………….40
Reference………………………………………………………………………………41
dc.language.isoen
dc.subject銀線環境與電流操作穩定性zh_TW
dc.subject奈米銀線複合電極zh_TW
dc.subject銀線環境與電流操作穩定性zh_TW
dc.subject奈米銀線複合電極zh_TW
dc.subjectair and current operation stability of AgNWsen
dc.subjectsilver nanowires composite electrodeen
dc.subjectair and current operation stability of AgNWsen
dc.subjectsilver nanowires composite electrodeen
dc.title以原子層沈積技術成長參雜鉿的氧化鋅薄膜應用於奈米銀線複合電極之研究zh_TW
dc.titleApplying Hafnium-doped zinc oxide film by atomic layer deposition to silver nanowires composite electrodeen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林唯芳,周必泰
dc.subject.keyword奈米銀線複合電極,銀線環境與電流操作穩定性,zh_TW
dc.subject.keywordsilver nanowires composite electrode,air and current operation stability of AgNWs,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201600232
dc.rights.note有償授權
dc.date.accepted2016-05-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
2.61 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved