請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5111
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張雅君(Ya-Chun Chang) | |
dc.contributor.author | Pei-ying Li | en |
dc.contributor.author | 李佩穎 | zh_TW |
dc.date.accessioned | 2021-05-15T17:52:03Z | - |
dc.date.available | 2016-08-17 | |
dc.date.available | 2021-05-15T17:52:03Z | - |
dc.date.copyright | 2014-08-17 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | 王生荣,朱克恭。2002。植物系统获得抗病性研究进展。中国生态农业学报 10(2), 32-35。
吴建丽, 郝建军。2005。水杨酸与植物诱导抗病性。辽宁林业科技1, 33-5。 林照能。1996。水稻葉片老化之研究。國立臺灣大學農藝研究所碩士論文。 翟熙伦,杨金广,申莉莉,钱玉梅,王盼,孙丽萍,王惠卿,赵洪东,王永,王风龙。2012。一株对 TMV 和 PVY 具有拮抗活性生防菌的筛选与鉴定。中国农业科学 45, 2180-8。 Allfrey V, Faulkner R, Mirsky A, 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51, 786. Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis DM, 2009. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retrov 25, 207-12. Arfmann HA, Haase E, 1981. Effect of sodium butyrate on modification of histones in cell cultures of Nicotiana tabacum. Plant Sci Lett 21, 317-24. Baidyaroy D, Brosch G, Graessle S, Trojer P, Walton JD, 2002. Characterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi. Eukaryot Cell 1, 538-47. Baltimore D, 1971. Expression of animal virus genomes. Bacteriol Rev 35, 235. Bolden JE, Peart MJ, Johnstone RW, 2006. Anticancer activities of histone deacetylase inhibitors. Nat rev Drug Discov 5, 769-84. Boto L, Cano A, Pestana A, 1987. Biochemical and morphological effects of sodium butyrate on Dictyostelium discoideum development. Mol Cell Biochem 74, 137-47. Candido EPM, Reeves R, Davie JR, 1978. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105-13. Carafa V, Miceli M, Altucci L, Nebbioso A, 2013. Histone deacetylase inhibitors: a patent review (2009 - 2011). Expert Opin Ther Pat 23, 1-17. Caro E, Castellano MM, Gutierrez C, 2007. A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447, 213-7. Cohen Y, 1994. 3-Aminobutyric acid induces systemic resistance against Peronospore tabacina. Physiol Mol Plant P 44, 273-88. Cohen Y, Rubin AE, Kilfin G, 2010. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). Eur J Plant Pathol 126, 553-73. Cohen Y, Rubin AE, Vaknin M, 2011. Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. Eur J Plant Pathol 130, 13-27. Cohen YR, 2002. β-aminobutyric acid-induced resistance against plant pathogens. Plant dis 86, 448-57. Cummings JH, 1981. Short chain fatty acids in the human colon. Gut 22, 763-79. Daigle D, Megyola C, El-Guindy A, Gradoville L, Tuck D, Miller G, Bhaduri-McIntosh S, 2010. Upregulation of STAT3 marks Burkitt lymphoma cells refractory to Epstein-Barr virus lytic cycle induction by HDAC inhibitors. J Virol 84, 993-1004. De Ruijter AJ, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg AB, 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370, 737. Dokmanovic M, Clarke C, Marks PA, 2007. Histone deacetylase inhibitors: overview and perspectives. Mol cancer res 5, 981-9. Edelstein LC, Micheva-Viteva S, Phelan BD, Dougherty JP, 2009. Short communication: activation of latent HIV type 1 gene expression by suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor approved for use to treat cutaneous T cell lymphoma. AIDS Res Hum Retrov 25, 883-7. Fu W, Wu K, Duan J, 2007. Sequence and expression analysis of histone deacetylases in rice. Biochem Bioph Res Co 356, 843-50. Giannini G, Cabri W, Fattorusso C, Rodriquez M, 2012. Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives. Future Med Chem 4, 1439-60. Hague A, Manning A, Hanlon K, Hart D, Paraskeva C, Huschtscha L, 1993. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53‐independent pathway: implications for the possible role of dietary fibre in the prevention of large‐bowel cancer. Int J Cancer 55, 498-505. Hu Y, Qin F, Huang L, Sun Q, Li C, Zhao Y, Zhou DX, 2009. Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Bioph Res Co 388, 266-71. Jana S, Choudhuri MA, 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot 12, 345-54. Keedy KS, Archin NM, Gates AT, Espeseth A, Hazuda DJ, Margolis DM, 2009. A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. J Virol 83, 4749-56. Kim CH, Kim KI, Hong SH, Lee YH, Chung IS, 2001. Improved production of recombinant rotavirus VP6 in sodium butyrate-supplemented suspension cultures of transgenic tomato (Lycopersicon esculentum Mill.) cells. Biotechnol lett 23, 1061-6. Kruh J, 1981. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 42, 65-82. Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, Ahlquist P, 2003. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc Natl Acad Sci U S A 100, 15764-9. Lazzarato L, Trebbi G, Pagnucco C, Franchin C, Torrigiani P, Betti L, 2009. Exogenous spermidine, arsenic and β-aminobutyric acid modulate tobacco resistance to Tobacco mosaic virus, and affect local and systemic glucosylsalicylic acid levels and arginine decarboxylase gene expression in tobacco leaves. J Plant Physiol 166, 90-100. Licciardi PV, Kwa FA, Ververis K, Di CN, Balcerczyk A, Tang ML, EI-Osta, Karagiannis T, 2012. Influence of natural and synthetic histone deacetylase inhibitors on chromatin. Antioxid Redox Sign 17, 340-54. Macías FA, Oliveros-Bastidas A, Marín D, Castellano D, Simonet AM, Molinillo JM, 2004. Degradation studies on benzoxazinoids. Soil degradation dynamics of 2, 4-dihydroxy-7-methoxy-(2 H)-1, 4-benzoxazin-3 (4 H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from Gramineae. J Agr Food Chem 52, 6402-13. Malamy J, Hennig J, Klessig DF, 1992. Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to Tobacco mosaic virus infection. Plant Cell 4, 359-66. Marchion D, Münster P, 2007. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticanc 7, 583-98. Margolis DM, 2011. Histone deacetylase inhibitors and HIV latency. Curr Opin HIV AIDS 6, 25. Mitter N, Kazan K, Way HM, Broekaert WF, Manners JM, 1998. Systemic induction of an Arabidopsis plant defensin gene promoter by Tobacco mosaic virus and jasmonic acid in transgenic tobacco. Plant sci 136, 169-80. Nguyen LN, Lopes LCL, Cordero RJ, Nosanchuk JD, 2011. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. J antimicrob chemoth 66, 2573-80. Ottmann C, Luberacki B, Küfner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz HU, Nurnberger T, Oecking C, 2009. A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci U S A 106, 10359-64. Panavas T, Serviene E, Brasher J, Nagy PD, 2005. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc Natl Acad Sci U S A 102, 7326-31. Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richard EJ, Bender J, Jorgensen RA, 2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30, 5036-55. Pertot I, Fiamingo F, Elad Y, 2009. Evaluation of Disease Control Provided by the SAR-inducer Benzothiadiazole (Bion) in Strawberry. Acta Hort. (ISHS) 807: 739-44. Rabindran S, Dawson WO, 2001. Assessment of recombinants that arise from the use of a TMV-based transient expression vector. Virology 284, 182-9. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ, 2009. The challenge of finding a cure for HIV infection. Science 323, 1304-7. Romero‐Puertas M, Rodr guez‐Serrano M, Corpas F, Gomez MD, Del Rio L, Sandalio L, 2004. Cadmium‐induced subcellular accumulation of O2− and H2O2 in pea leaves. Plant Cell Environ 27, 1122-34. Sato A, Saito Y, Sugiyama K, Sakasegawa N, Muramatsu T, Fukuda S, Yoneya M, Kimura M, Ebinuma H, Hibi T, Ikeda M, Kato N, Saito H, 2013. Suppressive effect of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) on Hepatitis C virus replication. J Cell Biochem 114, 1987-96. Sealy L, Chalkley R, 1978. The effect of sodium butyrate on histone modification. Cell 14, 115-21. Shestakova E, Bandu M-T, Doly J, Bonnefoy E, 2001. Inhibition of histone deacetylation induces constitutive derepression of the beta interferon promoter and confers antiviral activity. J Virol 75, 3444-52. Siegrist J, Orober M, Buchenauer H, 2000. β-Aminobutyric acid-mediated enhancement of resistance in tobacco to Tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol Mol Plant P 56, 95-106. Suliman BA, Xu D, Williams BR, 2012. HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunol Cell Biol 90, 23-32. Visentin I, Montis V, Döll K, Alabouvette C, Tamietti G, Karlovsky P, Cardinale F, 2012. Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. Eukaryot cell 11, 252-9. Westphal EM, Blackstock W, Feng W, Israel B, Kenney SC, 2000. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res 60, 5781-8. Wightman F, Ellenberg P, Churchill M, Lewin SR, 2012. HDAC inhibitors in HIV. Immunol Cell Biol 90, 47-54. Yalpani N, Leon J, Lawton MA, Raskin I, 1993. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103, 315-21. Yalpani N, Silverman P, Wilson T, Kleier DA, Raskin I, 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3, 809-18. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5111 | - |
dc.description.abstract | 病毒於感染植物之後,常造成植株無法復原的傷害,而穩定有效的病毒防治策略仍有待發展。Histone deacetylases (HDACs) 在細胞中負責調控 histone 修飾行為,藉以影響基因的表現。過去研究顯示 Brome mosaic virus, Tomato bushy stunt virus 此兩種 RNA 病毒在 HDACs 基因功能缺失的酵母菌中,其病毒的累積會受到影響而下降,且 Histone deacetylase inhibitors (HDACi) 更被發現在 HCV replicon cell OR6上對C型肝炎病毒的複製有顯著的抑制效果,但這類物質的作用卻缺乏植物病毒方面的探討,因此本實驗選用sodium butyrate (HDACi 中的一種) 在易感病圓葉菸草進行菸草嵌紋病毒抗性測試。實驗結果顯示 sodium butyrate 雖無法阻止病毒系統性感染植株,但可延遲病株的病程發展並減緩外部病徵,且在抗性蛋白的時程表現上,有測得水楊酸抗性途徑之標記基因 PR-1a 的生成,推測其可能的調控與水楊酸路徑相關,且其在系統葉上的表現量較處理葉為多,但相反地水楊酸處理的植株,其處理葉上的 PR-1a 其表現量比系統葉來得多,顯示sodium butyrate誘導系統性抗性較水楊酸為佳,但局部抗性誘導以水楊酸為佳,因此將水楊酸和 sodium butyrate 合併塗抹於葉片上,實驗結果顯示,合併使用其抗性有加成效果。另外在活性氧物質的測定上,1 mM 的sodium butyrate單獨使用處理也會造成系統葉上過氧化氫的累積。因此 sodium butyrate 的誘導系統性抗病能力應為未來可應用之方法,期為植物病毒病害防治提供新的方向。 | zh_TW |
dc.description.abstract | Viruses cause serious damage to crops; however, effective plant antiviral disease managements remain largely to be explored. Histone deacetylases (HDACs) are genes involved in histone regulation, and modulate the expression of genes. Previous studies demonstrated that in histone deacetylases (HDACs) single-gene-knockout yeasts the accumulation of Brome mosaic virus and Tomato bushy stunt virus decreased, and application of histone deacetylase inhibitors (HDACi) to HCV replicon cell OR6 showed suppressive effect on Hepatitis C virus. However, whether HDACi can be applied for plant viral disease management remained to be resolved. In this study, we first treated sodium butyrate (one kind of HDACi) to Nicotiana benthamiana, a susceptible host, to Tobacco mosaic virus (TMV). The data indicated that plants pretreated with sodium butyrate showed more vigorously growth and delayed in symptom expression than untreated plants after TMV inoculation. In addition, our RT-PCR revealed that the application of sodium butyrate induced the expression of PR-1a, suggested that sodium butyrate participated in the salicylic acids (SA) related plant defense pathway. Furthermore, in contrast to SA-treated plants the expression of PR-1a is stronger in treated leaves than systemic leaves; sodium butyrate-treated leaf shows stronger PR-1a induction in systemic leaves. The production of ROS showed obviously increase in the systemic leaf of sodium butyrate-treated N. benthamiana. It indicated that SA may trigger stronger local defense and sodium butyrate trigger stronger systemic defense. Thus, we applied both SA and sodium butyrate solutions on the leaves of N. benthamiana, and enhanced resistance was observed on the mixed solutions-treated plants. It revealed that sodium butyrate has the potential to be applied in development of effective systemic antiviral disease managements. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:52:03Z (GMT). No. of bitstreams: 1 ntu-103-R01633006-1.pdf: 7787579 bytes, checksum: 8f12f30cffa23df41f544510e3af8717 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
口試委員審定書 i 致謝 ii 中文摘要 iii Abstract iv Contents vi Figure contents vii Table contents x Appendix contents xi Introduction 1 Materials and Methods 7 Results 12 Dicussion 18 References 24 Figures 33 Tables 58 Appendix 62 Figure contents Fig. 1 Symptoms of Nicotiana benthamiana infected with freeze-dried TMV at different concentrations five days pi 34 Fig. 2 Disease index for measuring the symptoms of TMV-infected Nicotiana benthamian 35 Fig. 3 Phenotypes of Nicotiana benthamiana drenched with different chemicals 36 Fig. 4 Phenotypes of Nicotiana benthamiana drenched with different concentrations of sodium butyrate 38 Fig. 5 Phenotypes of Nicotiana benthamiana drenched with different concentrations of sodium butyrate 40 Fig. 6 Phenotypes of Nicotiana benthamiana with leaves applied with chemicals 41 Fig. 7 Leaves appearance of Nicotiana benthamiana with leaves applied with chemicals 42 Fig. 8 Symptoms of Nicotiana benthamiana pre-drenched with chemicals then inoculated with TMV ten days pi 43 Fig. 9 Symptoms of Nicotiana benthamiana pretreated with chemicals on leaves then inoculated with TMV ten days pi 45 Fig. 10 Symptoms of Nicotiana benthamiana pretreated with chemicals on leaves then inoculated with TMV ten days pi 47 Fig. 11 Detection of PR1a expression in different chemical-treated Nicotiana benthamiana in 7-day time course 48 Fig. 12 Quantification of the symptom reduction of Nicotiana benthamiana pretreated with single or mixed chemicals and then inoculated with TMV 49 Fig. 13 Hydrogen peroxide accumulation was detected via DAB staining in different chemical-treated Nicotiana benthamiana one day after treatment 50 Fig. 14 Quantification of hydrogen peroxide accumulation in different chemical-treated Nicotiana benthamiana via DAB staining one day after treatment 51 Fig. 15 Quantification of hydrogen peroxide on Nicotiana benthamiana applied with different chemicals seven days after treatment 52 Fig. 16 Lesion numbers and whole leaf phenotype of Nicotiana glutinosa pre-drenched with chemicals and then inoculated with TMV five days pi 53 Fig. 17 Lesion numbers and whole leaf phenotype of Nicotiana glutinosa pretreated with chemicals and inoculated with TMV five days pi 55 Fig. 18 Phenotypes of Nicotiana tabacum Xanthi-nc treated with different solutions four days after treatment 56 Table contents Table 1. Primers used for RT-PCR analysis in Nicotiana benthamiana 59 Table 2. Reported concentration of chemicals used for plant treatment 60 Table 3. The expression pattern of PR1a derived from repeated experiments 61 Appendix contents Appendix Fig. 1 Symptoms of Nicotiana benthamiana pretreated with chemicals then inoculated with TMV-30B-GFP 63 Appendix Fig. 2 Symptoms of Nicotiana benthamiana infected by TMV-U1 on plants pretreated with chemicals 64 Appendix Table 1. The accumulation of hydrogen peroxide on leaves of different chemical-treated Nicotiana benthamiana 65 | |
dc.language.iso | en | |
dc.title | 探討 sodium butyrate 在病毒防治之利用與機轉 | zh_TW |
dc.title | Investigation of the effect of sodium butyrate on plant virus prevention and its mechanism | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 葉信宏(Hsin-Hung Yeh) | |
dc.contributor.oralexamcommittee | 洪挺軒(Ting-Hsuan Hung),柯文雄(Wen-Hsiung Ko) | |
dc.subject.keyword | histone deacetylases (HDACs),histone deacetylase inhibitors (HDACi),sodium butyrate,菸草嵌紋病毒,圓葉菸草, | zh_TW |
dc.subject.keyword | histone deacetylases (HDACs),histone deacetylase inhibitors (HDACi),sodium butyrate,TMV,Nicotiana benthamiana, | en |
dc.relation.page | 65 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 7.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。