請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51110
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張博鈞(Po-Chun Chang) | |
dc.contributor.author | Hsu-Hsiang Lin | en |
dc.contributor.author | 林序庠 | zh_TW |
dc.date.accessioned | 2021-06-15T13:25:22Z | - |
dc.date.available | 2020-08-26 | |
dc.date.copyright | 2020-08-26 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-10 | |
dc.identifier.citation | References 1. Lai, H., et al., A prediction model for periodontal disease: modelling and validation from a National Survey of 4061 Taiwanese adults. Journal of Clinical Periodontology, 2015. 42(5): p. 413-421. 2. Schroeder, H.E. and M.A. Listgarten, The gingival tissues: the architecture of periodontal protection. Periodontology 2000, 1997. 13(1): p. 91-120. 3. Yamamoto, T., et al., Histology of human cementum: Its structure, function, and development. The Japanese dental science review, 2016. 52(3): p. 63-74. 4. Arzate, H., M. Zeichner-David, and G. Mercado, Cementum proteins: Role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontology 2000, 2015. 67. 5. Chu, T.-M.G., S.S.-Y. Liu, and W.J. Babler, Chapter 11 - Craniofacial Biology, Orthodontics, and Implants, in Basic and Applied Bone Biology, D.B. Burr and M.R. Allen, Editors. 2014, Academic Press: San Diego. p. 225-242. 6. Park, C.H., Biomaterial-Based Approaches for Regeneration of Periodontal Ligament and Cementum Using 3D Platforms. International journal of molecular sciences, 2019. 20(18): p. 4364. 7. Darveau, R.P., Periodontitis: a polymicrobial disruption of host homeostasis. Nature Reviews Microbiology, 2010. 8(7): p. 481-490. 8. Wilson, M. and E. Houpt, Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease:Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease. Clinical Infectious Diseases - CLIN INFECT DIS, 2005. 41: p. 768-768. 9. Hannig, C., M. Hannig, and T. Attin, Enzymes in the acquired enamel pellicle. European Journal of Oral Sciences, 2005. 113(1): p. 2-13. 10. Kolenbrander, P.E., et al., Bacterial interactions and successions during plaque development. Periodontology 2000, 2006. 42(1): p. 47-79. 11. White, D.J., Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci, 1997. 105(5 Pt 2): p. 508-22. 12. Socransky, S.S., et al., Microbial complexes in subgingival plaque. Journal of Clinical Periodontology, 1998. 25(2): p. 134-144. 13. Van Winkelhoff, A.J., et al., Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction. Journal of Clinical Periodontology, 2002. 29(11): p. 1023-1028. 14. Graves, D.T., Y. Jiang, and C. Genco, Periodontal disease: bacterial virulence factors, host response and impact on systemic health. Current Opinion in Infectious Diseases, 2000. 13(3): p. 227-232. 15. Xu, X.-Y., et al., Concise Review: Periodontal Tissue Regeneration Using Stem Cells: Strategies and Translational Considerations. Stem cells translational medicine, 2019. 8(4): p. 392-403. 16. Hughes, F.J., M. Ghuman, and A. Talal, Periodontal regeneration: A challenge for the tissue engineer? Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010. 224(12): p. 1345-1358. 17. Park, C.H., et al., Spatiotemporally Controlled Microchannels of Periodontal Mimic Scaffolds. Journal of Dental Research, 2014. 93(12): p. 1304-1312. 18. Beertsen, W., C.A.G. McCulloch, and J. Sodek, The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 2000, 1997. 13(1): p. 20-40. 19. Position Paper: Periodontal Regeneration. Journal of Periodontology, 2005. 76(9): p. 1601-1622. 20. Ivanovski, S., Periodontal regeneration. Australian Dental Journal, 2009. 54(s1): p. S118-S128. 21. Laugisch, O., et al., Histologic evidence of periodontal regeneration in furcation defects: a systematic review. Clinical Oral Investigations, 2019. 23(7): p. 2861-2906. 22. SANZ, M. and J.L. GIOVANNOLI, Focus on furcation defects: guided tissue regeneration. Periodontology 2000, 2000. 22(1): p. 169-189. 23. Nyman, S., et al., New attachment formation by guided tissue regeneration. Journal of Periodontal Research, 1987. 22(3): p. 252-254. 24. Langer, R. and J. Vacanti, Tissue engineering. Science, 1993. 260: p. 920-926. 25. Almouemen, N., H.M. Kelly, and C. O'Leary, Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Computational and Structural Biotechnology Journal, 2019. 17: p. 591-598. 26. Thesleff, I. and M. Tummers, Stem Cells and Tissue Engineering: Prospects for Regenerating Tissues in Dental Practice. Medical Principles and Practice, 2003. 12(suppl 1)(Suppl. 1): p. 43-50. 27. Tada, S., T. Kitajima, and Y. Ito, Design and synthesis of binding growth factors. International journal of molecular sciences, 2012. 13(5): p. 6053-6072. 28. Duan, X., et al., Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. Journal of cellular physiology, 2011. 226(1): p. 150-157. 29. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543. 30. O'Brien, F.J., Biomaterials scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95. 31. Chan, B.P. and K.W. Leong, Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 2008. 17 Suppl 4(Suppl 4): p. 467-479. 32. Janik, H. and M. Marzec, A review: Fabrication of porous polyurethane scaffolds. Materials Science and Engineering: C, 2015. 48: p. 586-591. 33. Garg, T. and A.K. Goyal, Biomaterial-based scaffolds – current status and future directions. Expert Opinion on Drug Delivery, 2014. 11(5): p. 767-789. 34. Jammalamadaka, U. and K. Tappa, Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. Journal of Functional Biomaterials, 2018. 9(1): p. 22. 35. Liaw, C.-Y. and M. Guvendiren, Current and emerging applications of 3D printing in medicine. Biofabrication, 2017. 9(2): p. 024102. 36. Park, C.H., et al., Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials, 2012. 33(1): p. 137-145. 37. Rasperini, G., et al., 3D-printed Bioresorbable Scaffold for Periodontal Repair. Journal of Dental Research, 2015. 94(9_suppl): p. 153S-157S. 38. Lee, C.H., et al., Three-Dimensional Printed Multiphase Scaffolds for Regeneration of Periodontium Complex. Tissue Engineering Part A, 2013. 20(7-8): p. 1342-1351. 39. Costa, P.F., et al., Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. Journal of Clinical Periodontology, 2014. 41(3): p. 283-294. 40. Yahia, L.H. and G. Drouin, Microscopical investigation of canine anterior cruciate ligament and patellar tendon: Collagen fascicle morphology and architecture. Journal of Orthopaedic Research, 1989. 7(2): p. 243-251. 41. Franchi, M., et al., Structure relates to elastic recoil and functional role in quadriceps tendon and patellar ligament. Micron, 2009. 40(3): p. 370-377. 42. Franchi, M., et al., Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2010. 18(12): p. 1671-1678. 43. Grace Chao, P.-h., H.-Y. Hsu, and H.-Y. Tseng, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008. 44. Lam, C.X.F., et al., Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering: C, 2002. 20(1): p. 49-56. 45. An, J., et al., Design and 3D Printing of Scaffolds and Tissues. Engineering, 2015. 1(2): p. 261-268. 46. Berman, B., 3-D printing: The new industrial revolution. Business Horizons, 2012. 55(2): p. 155-162. 47. Dermanaki Farahani, R., M. Dubé, and T. Daniel, Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Advanced Materials, 2016. 28. 48. Ventola, C.L., Medical Applications for 3D Printing: Current and Projected Uses. P T : a peer-reviewed journal for formulary management, 2014. 39(10): p. 704-711. 49. Ligon, S.C., et al., Polymers for 3D Printing and Customized Additive Manufacturing. Chemical reviews, 2017. 117(15): p. 10212-10290. 50. Paul, G.M., et al., Medical Applications for 3D Printing: Recent Developments. Missouri medicine, 2018. 115(1): p. 75-81. 51. Xu, N., et al., 3D Artificial Bones for Bone Repair Prepared by Computed Tomography-Guided Fused Deposition Modeling for Bone Repair. ACS Applied Materials Interfaces, 2014. 6(17): p. 14952-14963. 52. Rimington, R.P., et al., Biocompatible 3D printed polymers via fused deposition modelling direct C2C12 cellular phenotype in vitro. Lab on a Chip, 2017. 17(17): p. 2982-2993. 53. Chen, Q., et al., 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials Interfaces, 2017. 9(4): p. 4015-4023. 54. Mazzanti, V., L. Malagutti, and F. Mollica, FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers, 2019. 11(7): p. 1094. 55. Salentijn, G.I., et al., Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications. Analytical chemistry, 2017. 89(13): p. 7053-7061. 56. Gajdos, I., et al., Surface Finish Techniques for FDM Parts. Materials Science Forum, 2015. 818: p. 45-48. 57. Galantucci, L.M., F. Lavecchia, and G. Percoco, Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Annals, 2009. 58(1): p. 189-192. 58. Yu, Z., et al., Study on Effects of FDM 3D Printing Parameters on Mechanical Properties of Polylactic Acid. IOP Conference Series: Materials Science and Engineering, 2019. 688: p. 033026. 59. Linares, V., M. Casas, and I. Caraballo, Printfills: 3D printed systems combining fused deposition modeling and injection volume filling. Application to colon-specific drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2019. 134: p. 138-143. 60. Rubio-Pérez, I. and A. Diaz Lantada, Surgical Planning of Sacral Nerve Stimulation Procedure in Presence of Sacral Anomalies by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques. Polymers, 2020. 12: p. 581. 61. Wang, N., et al., 3D printing personalized implant manufactured via fused deposition modeling: an accuracy research. Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 2015. 33: p. 509-512. 62. Prakash, D., R. Davis, and A. Sharma, Design and fabrication of dental implant prototypes using additive manufacturing. IOP Conference Series: Materials Science and Engineering, 2019. 561: p. 012041. 63. Do, A.-V., et al., 3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced healthcare materials, 2015. 4(12): p. 1742-1762. 64. Kim, S.-Y., et al., Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. American Journal of Orthodontics and Dentofacial Orthopedics, 2018. 153(1): p. 144-153. 65. Chantarapanich, N., et al., Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process. Songklanakarin Journal of Science and Technology, 2013. 35: p. 91-98. 66. Steyrer, B., et al., Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins. Materials, 2017. 10: p. 1445. 67. Sandström, C., The non-disruptive emergence of an ecosystem for 3D Printing — Insights from the hearing aid industry's transition 1989–2008. Technological Forecasting and Social Change, 2015. 102. 68. Osman, R.B., N. Alharbi, and D. Wismeijer, Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology? The International journal of prosthodontics, 2017. 30(2): p. 182-188. 69. Sherman, S.L., et al., Accuracy of digital light processing printing of 3-dimensional dental models. American Journal of Orthodontics and Dentofacial Orthopedics, 2020. 157(3): p. 422-428. 70. Schmidleithner, C., et al., Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomedical Materials, 2019. 14. 71. Chen, C.-H., et al., Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication, 2014. 6(1): p. 015004. 72. Kinstlinger, I.S., et al., Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone. PloS one, 2016. 11(2): p. e0147399-e0147399. 73. Wanibuchi, M., et al., Skull base training and education using an artificial skull model created by selective laser sintering. Acta Neurochirurgica, 2010. 152(6): p. 1055-1060. 74. Montgomery John, T., R. Vaughan Meagan, and H. Crawford Richard, Design of an actively actuated prosthetic socket. Rapid Prototyping Journal, 2010. 16(3): p. 194-201. 75. Hao, L., et al., Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. Journal of Materials Processing Technology, 2009. 209(17): p. 5793-5801. 76. Williams, J.M., et al., Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005. 26(23): p. 4817-4827. 77. Wiria, F.E., et al., Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, 2007. 3(1): p. 1-12. 78. Mangano, F., et al., Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature. Vol. 2014. 2014. 11. 79. van Hengel, I.A.J., et al., Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 2017. 140: p. 1-15. 80. Gan, M.X. and C.H. Wong, Practical support structures for selective laser melting. Journal of Materials Processing Technology, 2016. 238: p. 474-484. 81. Yap, C.Y., et al., Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2015. 2(4): p. 041101. 82. Kruth, J.-P., et al., Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM. Proc. VRAP, Leiria, 2005: p. 139-146. 83. Mangano, F., et al., Direct metal laser sintering titanium dental implants: a review of the current literature. International journal of biomaterials, 2014. 2014: p. 461534-461534. 84. Ramakrishnaiah, R., et al., Preliminary fabrication and characterization of electron beam melted Ti-6Al-4V customized dental implant. Saudi journal of biological sciences, 2017. 24(4): p. 787-796. 85. Wehmoller, M., et al., CARS: Computer Assisted Radiology and Surgery. 2005, Elsevier. 86. Murr, L.E., Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials, 2017. 76: p. 164-177. 87. Foster, B., et al. Optical, layerwise monitoring of powder bed fusion. in Solid Freeform Fabrication Symposium, Austin, TX, Aug. 2015. 88. Molitch-Hou, M., 1 - Overview of additive manufacturing process, in Additive Manufacturing, J. Zhang and Y.-G. Jung, Editors. 2018, Butterworth-Heinemann. p. 1-38. 89. Mai, H.-N., K.-B. Lee, and D.-H. Lee, Fit of interim crowns fabricated using photopolymer-jetting 3D printing. The Journal of Prosthetic Dentistry, 2017. 118(2): p. 208-215. 90. Bauer, M., et al., 3D Printing of Elastic Membranes for Fluidic Pumping and Demonstration of Reciprocation Inserts on the Microfluidic Disc. Micromachines, 2019. 10(8): p. 549. 91. Mitsouras, D., et al., Medical 3D Printing for the Radiologist. Radiographics : a review publication of the Radiological Society of North America, Inc, 2015. 35(7): p. 1965-1988. 92. Fiorenza, L., et al., Technical note: The use of 3D printing in dental anthropology collections. American Journal of Physical Anthropology, 2018. 167(2): p. 400-406. 93. Revilla-León, M. and M. Özcan, Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. Journal of Prosthodontics, 2019. 28(2): p. 146-158. 94. Moore Jacob, P. and B. Williams Christopher, Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyping Journal, 2015. 21(6): p. 675-685. 95. Hong, D., et al., Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomaterialia, 2016. 45: p. 375-386. 96. Ziaee, M. and N.B. Crane, Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 2019. 28: p. 781-801. 97. Salmi, M., Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing. Journal of Medical Engineering, 2016. 2016. 98. Trenfield, S.J., et al., Binder Jet Printing in Pharmaceutical Manufacturing, in 3D Printing of Pharmaceuticals, A.W. Basit and S. Gaisford, Editors. 2018, Springer International Publishing: Cham. p. 41-54. 99. Acosta-Vélez, G.F., et al., Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs. International Journal of Pharmaceutics, 2018. 546(1): p. 145-153. 100. Mirzababaei, S. and S. Pasebani, A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. Journal of Manufacturing and Materials Processing, 2019. 3: p. 82. 101. Vijayavenkataraman, S., et al., 3D bioprinting of tissues and organs for regenerative medicine. Advanced Drug Delivery Reviews, 2018. 132: p. 296-332. 102. Mandrycky, C., et al., 3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016. 34(4): p. 422-434. 103. Gopinathan, J. and I. Noh, Recent trends in bioinks for 3D printing. Biomaterials research, 2018. 22: p. 11-11. 104. Angelopoulos, I., et al., Engineering inkjet bioprinting processes toward translational therapies. Biotechnology and Bioengineering, 2020. 117(1): p. 272-284. 105. Choi, M., et al., Multicomponent High-throughput Drug Screening via Inkjet Printing to Verify the Effect of Immunosuppressive Drugs on Immune T Lymphocytes. Scientific Reports, 2017. 7(1): p. 6318. 106. Scoutaris, N., et al., Inkjet printing as a novel medicine formulation technique. Journal of Controlled Release, 2011. 156(2): p. 179-185. 107. Mau, R., et al., Inkjet printing for localized coating and functionalization of medical devices. Current Directions in Biomedical Engineering, 2018. 4: p. 233-236. 108. Masaeli, E., et al., Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication, 2020. 12(2): p. 025006. 109. Ozbolat, I.T. and M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 2016. 76: p. 321-343. 110. Liu, W., et al., Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Advanced Healthcare Materials, 2017. 6(12): p. 1601451. 111. Keriquel, V., et al., In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Scientific Reports, 2017. 7(1): p. 1778. 112. Ali, M., et al., Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication, 2014. 6(4): p. 045001. 113. Derakhshanfar, S., et al., 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Materials, 2018. 3(2): p. 144-156. 114. Michael, S., et al., Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. PLOS ONE, 2013. 8(3): p. e57741. 115. Wang, Z., et al., Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. ACS Applied Materials Interfaces, 2018. 10(32): p. 26859-26869. 116. Wang, Z., et al., A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 2015. 7(4): p. 045009. 117. Kundu, J., et al., Chapter 2 - Biomaterials for Biofabrication of 3D Tissue Scaffolds, in Biofabrication, G. Forgacs and W. Sun, Editors. 2013, William Andrew Publishing: Boston. p. 23-46. 118. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8): p. 762-798. 119. Salehi-Nik, N., et al., Polymers for oral and dental tissue engineering. 2017. p. 25-46. 120. Sundaram, C.P. and A.C. Keenan, Evolution of hemostatic agents in surgical practice. Indian journal of urology : IJU : journal of the Urological Society of India, 2010. 26(3): p. 374-378. 121. Stoecklin-Wasmer, C., et al., Absorbable Collagen Membranes for Periodontal Regeneration: A Systematic Review. Journal of Dental Research, 2013. 92(9): p. 773-781. 122. Huang, L.L.H., et al., Medical Applications of Collagen and Hyaluronan in Regenerative Medicine, in Novel Biomaterials for Regenerative Medicine, H.J. Chun, et al., Editors. 2018, Springer Singapore: Singapore. p. 285-306. 123. Zhang, Y.S., et al., 3D Bioprinting for Tissue and Organ Fabrication. Annals of biomedical engineering, 2017. 45(1): p. 148-163. 124. Au - Müller, M., et al., Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture. JoVE, 2013(77): p. e50632. 125. Gelber, M.K. and R. Bhargava, Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt. Lab on a chip, 2015. 15(7): p. 1736-1741. 126. Mohanty, S., et al., Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering: C, 2015. 55: p. 569-578. 127. Hinton, T.J., et al., Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances, 2015. 1. 128. Melcher, A. and T. Walker, The periodontal ligament in attachment and as a shock absorber. In (DG F. Poole and MV Stack, Eds) The Eruption and Occlusion of Teeth. 1976, London: Butterworths. 129. Mehari Abraha, H., et al., The Mechanical Effect of the Periodontal Ligament on Bone Strain Regimes in a Validated Finite Element Model of a Macaque Mandible. Frontiers in Bioengineering and Biotechnology, 2019. 7(269). 130. Panagiotopoulou, O., K. Kupczik, and S.N. Cobb, The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis. Journal of anatomy, 2011. 218(1): p. 75-86. 131. Li, Y., et al., Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Archives of Oral Biology, 2013. 58(5): p. 511-522. 132. Long, P., et al., Low Magnitude of Tensile Strain Inhibits IL-1β-dependent Induction of Pro-inflammatory Cytokines and Induces Synthesis of IL-10 in Human Periodontal Ligament Cells in vitro. Journal of Dental Research, 2001. 80(5): p. 1416-1420. 133. Jacobs, C., et al., Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Archives of Oral Biology, 2013. 58(7): p. 896-904. 134. Rios, H.F., et al., Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. Journal of periodontology, 2008. 79(8): p. 1480-1490. 135. Kearney, E.M., et al., Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis. Annals of Biomedical Engineering, 2010. 38(5): p. 1767-1779. 136. Mauck, R.L., et al., Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels. Journal of Biomechanical Engineering, 2000. 122(3): p. 252-260. 137. Kim, S.G., et al., Engineering of a periodontal ligament construct: cell and fibre alignment induced by shear stress. Journal of clinical periodontology, 2011. 38(12): p. 1130-1136. 138. Zheng, L., et al., The effects of fluid shear stress on proliferation and osteogenesis of human periodontal ligament cells. Journal of Biomechanics, 2016. 49(4): p. 572-579. 139. Tang, M., et al., Fluid Shear Stress Stimulates Osteogenic Differentiation of Human Periodontal Ligament Cells via the Extracellular Signal-Regulated Kinase 1/2 and p38 Mitogen-Activated Protein Kinase Signaling Pathways. Journal of Periodontology, 2014. 85(12): p. 1806-1813. 140. Hung, P.S., et al., miR-146a Induces Differentiation of Periodontal Ligament Cells. Journal of Dental Research, 2010. 89(3): p. 252-257. 141. Au - Lane, W.O., et al., Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress. JoVE, 2012(59): p. e3349. 142. Chen, G., T. Ushida, and T. Tateishi, Scaffold Design for Tissue Engineering. Macromolecular Bioscience, 2002. 2(2): p. 67-77. 143. Rider, P., et al., Bioprinting of tissue engineering scaffolds. Journal of tissue engineering, 2018. 9: p. 2041731418802090-2041731418802090. 144. Lewicki, J., et al., Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel. Bioprinting, 2019. 16: p. e00053. 145. Esposito, M., et al., Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects. Cochrane Database of Systematic Reviews, 2009(4). 146. Grover, C.N., et al., Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia, 2012. 8(8): p. 3080-3090. 147. Studzinski, G.P., E. Gocek, and M. Danilenko, Chapter 84 - Vitamin D Effects on Differentiation and Cell Cycle, in Vitamin D (Third Edition), D. Feldman, J.W. Pike, and J.S. Adams, Editors. 2011, Academic Press: San Diego. p. 1625-1656. 148. Lodish H, B.A., Zipursky SL, et al., Section 22.1, Cell-Cell Adhesion and Communication. 2000. 149. Gumbiner, B.M., Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell, 1996. 84(3): p. 345-357. 150. Conway, S.J., et al., The role of periostin in tissue remodeling across health and disease. Cellular and Molecular Life Sciences, 2014. 71(7): p. 1279-1288. 151. Kehlet, S.N., et al., Chapter 31 - The collagen chaperones, in Biochemistry of Collagens, Laminins and Elastin (Second Edition), M.A. Karsdal, Editor. 2019, Academic Press. p. 275-291. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51110 | - |
dc.description.abstract | 牙周炎是牙周組織破壞性疾病,牙周組織包括齒槽骨、牙齦、牙周韌帶及牙骨質,牙周韌帶連接齒槽骨及牙骨質並在緩衝牙齒咬合時產生的負荷扮演重要角色且擁有其他如組織修復、運送養分、傳導神經感覺等的重要功能。然而牙周韌帶的再生及功能性恢復對現今的牙科技術仍是一大挑戰,本研究目標為開發出能承受剪力負荷之組織工程膠原蛋白微纖維支架,以引導牙周韌帶再生並幫助實現牙周組織的功能性重建。 本研究設計直線型及波浪型之膠原蛋白微纖維,以使用微量擠出技術(microextrusion)之三維生物列印機(bioprinter)印製,使用核黃素及紫外光交聯(crosslink)後執行後續的剪力實驗,實驗以平行板流體流動腔(parallel-plate fluid flow chamber)建構生物反應器(bioreactor)以形成流體剪力刺激並培養牙周韌帶細胞。將牙周韌帶細胞種植於直線型及波浪型之膠原蛋白微纖維後以0、6、12 dynes/cm2 之流體剪力培養與刺激1、4、8小時,並以DAPI/F-actin/Vinculin之免疫螢光染色、Live/Dead assay、RT-qPCR觀測細胞之形態、存活率及基因表現。 經過膠原蛋白列印最佳化並設定最佳列印參數後,膠原蛋白微纖維以250千帕(kPa)之列印壓力、2 mm/s之列印速度及34G針頭成功印製。直線型微纖維之寬度為189.9 ± 11.44 μm,波浪型微纖維之寬度為228.7 ± 13.06 μm,波浪型微纖維之振幅及波長分別為238.2 ± 17.12 μm及750.2 ± 13.80 μm。實驗結果發現牙周韌帶細胞及膠原蛋白微纖維成功承受6-12 dynes/cm2 之流體剪力並順利貼附。受剪力刺激後,貼附於波浪型膠原蛋白微纖維之細胞骨架有較明顯的伸展且細胞存活率較佳,細胞週期素D(cyclin D)、E-鈣粘蛋白(E-cadherin)及骨膜素(periostin)之表現量亦較高。 本研究的結論是經過列印最佳化後,模擬牙周韌帶之膠原蛋白微纖維能順利以三維生物列印機製成並以核黃素及紫外光交聯。與直線型膠原蛋白微纖維相比,波浪型微纖維更能承載剪力負荷且維持住細胞的存活率,細胞貼附於波浪型膠原蛋白微纖維之基因表現亦顯示出有較強的再生潛能。本實驗結果表明波浪型支架設計有望幫助牙周韌帶再生並實現牙周組織的功能性重建,因此評估波浪型膠原蛋白微纖維支架對牙周韌帶之功能性重建的臨床前試驗是必需且令人期待的。 | zh_TW |
dc.description.abstract | Objective: The periodontal ligament (PDL) plays a pivotal role in occlusal load adaptation, in addition to other important functions. However, the functional reconstruction of the PDL remains a challenge. This study therefore sought to develop a PDL guiding microfiber scaffold which was capable of withstanding shear stress from the occlusal loads.
Materials Methods: Collagen-based straight and wavy microfibers were designed to serve as substrates for PDL cell growth. The microfibers were prepared with a bioprinter using microextrusion technology coupled with riboflavin/UV 365 nm crosslinking. The capability of the scaffold to withstand occlusal load was assessed with a parallel-plate fluid flow chamber to generate shear stress levels within a 0–12 dynes/cm2 range, and the cell morphology, viability, and gene expression of PDL cells on the microfibers was evaluated via DAPI/F-actin/vinculin staining, the live/dead assay, and quantitative reverse transcription polymerase chain reaction (RT-qPCR), respectively. Results: Upon collagen bioprinting optimization (i.e., adjustment of the printing parameters), collagen-based microfibers were successfully fabricated under a 250 kPa pressure with a 34G needle at a 2 mm/s printing speed. The width of each straight microfiber was 189.9 ± 11.44 μm, whereas the width of the wavy microfibers was 228.7 ± 13.06 μm. Moreover, the amplitude and wavelength of wavy microfibers were 238.2 ± 17.12 μm and 750.2 ± 13.80 μm, respectively. Under shear stress stimulation, PDL cells were successfully seeded on both straight and wavy microfibers and cytoskeleton stretching was more evident on wavy microfibers. Additionally, PDL cell viability was higher on wavy microfibers and cyclin D, E-cadherin, and periostin gene expression was up-regulated. Conclusion: Collagen-based microfibers mimicking PDL fiber structure were rapidly prototyped using a bioprinter with riboflavin/UV 365 nm crosslinking. Notably, wavy microfibers were capable of withstanding shear load stimulation, preserved PDL cell viability and gene expression, and exhibited an enhanced tendency to promote healing and regeneration. Therefore, further preclinical research is required to confirm the fiber-guiding potential and function of this novel PDL cell/microfiber scaffold material. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:25:22Z (GMT). No. of bitstreams: 1 U0001-1008202015304600.pdf: 4663010 bytes, checksum: cb6f978274589c5d79d558f41f19e377 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Table of contents 口試委員會審定書 I 誌謝 II 中文摘要 III Abstract V Table of contents VII List of figures X Chapter 1 Introduction 1 Section 1 Periodontitis and periodontal regeneration 1 1-1 Prevalence and influence of periodontitis 1 1-2 Periodontium regeneration challenges 3 1-3 Tissue engineering 4 1-4 Fiber-guiding scaffold concepts 5 1-5 Multiphasic scaffold with bioactive cues for periodontium regeneration 6 1-6 Fiber crimping 8 Section 2 3D printing and bioprinting 9 2-1 3D printing 9 2-2 Bioprinting 13 2-3 Biomaterials and bio-inks for tissue engineering 15 2-4 Bioprinting with a gelatin-based sacrificial support bath 17 Section 3 Effect of shear stress on PDL cells 18 Chapter 2 Objective 20 Chapter 3 Materials and methods 21 Section 1 Fabrication of collagen microfibers 21 1-1 Design and fabrication of collagen-based microfibers 21 1-2 Collagen printing optimization 22 1-3 Printing result measurement and statistics 23 1-4 Fabrication of microfiber scaffolds with a gelatin-based sacrificial support bath 24 Section 2 In vitro test 25 2-1 Cell culture 25 2-2 Bioreactor assembly 26 2-3 Shear stress stimulation 27 2-4 Live/dead cell viability assay 28 2-5 Immunofluorescence and cell morphology 29 2-6 Total RNA purification and RT-qPCR 31 2-7 Statistical analysis 32 Chapter 4 Results 33 Section 1 Fabrication of collagen microfibers 33 1-1 Optimization of collagen bioprinting 33 1-2 Bioprinted collagen microfiber 35 1-3 Bioprinted collagen microfiber scaffold 36 Section 2 In vitro test 37 2-1 Live/dead cell viability assay 37 2-2 Immunofluorescence assessments and cell morphology analysis 38 2-3 RT-qPCR assessments 39 Chapter 5 Discussion 41 Section 1 Optimization of bioprinting and tissue engineering applications 41 Section 2 3D-printed scaffold for PDL fibers 43 Section 3 Gene expression associated with cell viability and periodontal regeneration 45 Section 4 Advantages of wavy fibers 47 Section 5 Importance of fiber-guiding for periodontal regeneration 49 Chapter 6 Conclusion 50 Figures 51 References 84 | |
dc.language.iso | en | |
dc.title | 快速成型之膠原蛋白微纖維支架設計以幫助牙周韌帶再生 | zh_TW |
dc.title | Design of Rapid-Prototyped Collagen-Based Microfiber Scaffold for PDL Regeneration | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李伯訓(Bor-Shiunn Lee),趙本秀(Pen-Hsiu Chao),何明樺(Ming-Hua Ho) | |
dc.subject.keyword | 牙周炎,牙周再生,牙周韌帶,組織工程,膠原蛋白,三維生物列印,生物反應器, | zh_TW |
dc.subject.keyword | periodontitis,periodontal ligament,periodontal regeneration,tissue engineering,bioprinting,collagen,bioreactor, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU202002819 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-11 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1008202015304600.pdf 目前未授權公開取用 | 4.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。