請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51108
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾鈞懋(Chun-Mao Tseng) | |
dc.contributor.author | Wei-Chih Chen | en |
dc.contributor.author | 陳韋志 | zh_TW |
dc.date.accessioned | 2021-06-15T13:25:20Z | - |
dc.date.available | 2021-06-11 | |
dc.date.copyright | 2016-06-11 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-05-20 | |
dc.identifier.citation | 王玉懷、莊文思 (1995)。 台灣附近海域風場之觀測。 中央氣象局氣象學報 第四十一卷第二期。
Amyot M., Gill G. and Morel F. M. (1997). Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environmental Science & Technology 31: 3606-3611. Amyot M., Lean D. and Mierle G (1997). Photochemical Formation of volatile mercury in high Arctic lakes Environmental Toxicology and Chemistry 16: 2054-2063. Andersson, M. E., K. Gårdfeldt, I. Wängberg, F. Sprovieri, N. Pirrone and O. Lindqvist (2007). Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Marine Chemistry 104: 214-226. Andersso, M. E., J. Sommar, K. Gårdfeldt and O. Lindqvist (2008). Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Marine Chemistry 110: 190-194. Andersson, M. E., J. Sommar, K. Gårdfeldt and S. Jutterström (2011). Air–sea exchange of volatile mercury in the North Atlantic Ocean. Marine Chemistry 125: 1-7. Baeyens, W. and M. Leermakers (1998). Elemental mercury concentrations and formation rates in the Scheldt estuary and the North Sea. Marine Chemistry 60: 257-266. Bagnato, E., M. Sproveri, M. Barra, M. Bitetto, M. Bonsignore, S. Calabrese, V. D. Stefano, E. Oliveri, F. Parello and S. Mazzola (2013). The sea–air exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): concentrations and evasion flux. Chemosphere 93: 2024-2032. Ci, Z., X. Zhang and Z. Wang (2011a). Elemental mercury in coastal seawater of Yellow Sea, China: Temporal variation and airesea exchange. Atmospheric Environment 45: 183-190. Ci, Z. J., X. S. Zhang, Z. W. Wang, Z. C. Niu, X. Y. Diao and S. W. Wang (2011b). Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea. Atmospheric Chemistry and Physics Discussions 11: 2881-2892. Conaway, C. H., S. Squire, R. P. Mason and A. R. Flegal (2003). Mercury speciation in the San Francisco bay estuary. Marine Chemistry 80: 199-225. Coquery, M. and D. Cossa (1995). Mercury speciation in surface waters of the North Sea. Netherlands Journal of Sea Research 34: 245-257. Cossa D., Coquery M., Martin J. M. (1993). Mercury in the Lena delta and Laptev Sea, 3rd International Symposium. Model estuaries: the Arctic estuaries and adjacent seas. Biogeochemical processes and interactions with global change: 19–25. Cossa, D., J.-M. Martin, K. Takayanagis and J. Sanjuan (1997). The distribution and cycling of mercury species in the western Mediterranean. Deep-Sea Research II 44: 721-740. Draxler, R. R. and Rolph, G. D., 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD. Fantozzi, L., R. Ferrara, F. P. Frontini and F. Dini (2007). Factors influencing the daily behaviour of dissolved gaseous mercury concentration in the Mediterranean Sea. Marine Chemistry 107: 4-12. Ferrara, R., B. Mazzolai, E. Lanzillotta, E. Nucaro and N. Pirrone (2000). Temporal trends in gaseous mercury evasion from the Mediterranean seawaters. The Science of the Total Environment 259: 183-190. Fitzgerald, W. F. and T. W. Clarkson (1991). Mercury and monomethylmercury: Present and future concerns. Environmental Health Perspectives 96: 159-166. Friedli, H. R., L. F. Radke and R. Prescott (2004). Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: Measurements, distributions, sources, and implications. Journal of Geophysical Research 109: D19S25. Fu, X., X. Feng, G. Zhang, W. Xu, X. Li, H. Yao, P. Liang, J. Li, J. Sommar, R. Yin and N. Liu (2010). Mercury in the marine boundary layer and seawater of the South China Sea: concentrations, sea/air flux, and implication for land outflow. Journal of Geophysical Research 115: D06303. Gardfeldt, K., X. Feng, J. Sommar and O. Lindqvist (2001). Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions. Atmospheric Environment 35: 3024-3038. Gardfeldt, K., J. Sommar, R. Ferrara, C. Ceccarini, E. Lanzillotta, J. Munthe, I. Wangberg, O. Lindqvist, N. Pirrone, F. Sprovieri, E. Pesenti and D. Stromberg (2003). Evasion of mercuryfrom coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment 37: S73-S84. Hammerschmidt, C. R. (2011). Mercury and carbon dioxide emissions: uncoupling a toxic relationship. Environmental Toxicology and Chemistry 30: 2640-2646. Jaffe, D., E. Prestbo, P. Swartzendruber, P. Weiss-Penzias, S. Kato, A. Takami, S. Hatakeyama and Y. Kajii (2005). Export of atmospheric mercury from Asia. Atmospheric Environment 39: 3029-3038. Jeremiason, J. D., L. A. Kanne, T. A. Lacoe, M. Hulting and M. F. Simcik (2009). A comparison of mercury cycling in lakes Michigan and superior. Journal of Great Lakes Research 35: 329-336. Kim, J. P. and W. F. Fitzgerald (1986). Sea-air partitioning of mercury in the equatorial Pacific Ocean. Science 231: 1131-1133. Kirk, J. L., I. Lehnherr, M. Andersson, B. M.Braune, L. Chan, A. P. Dastoor, D. Durnford, A. L. Gleason, L. L. Loseto, A. Steffen and V. L. S. Louis (2012). Mercury in Arctic marine ecosystems: sources, pathways and exposure. Environmental Research 119: 64-87. Kuss, J. and B. Schneider (2007). Variability of the gaseous elemental mercury sea–air flux of the Baltic Sea. Environmental Science & Technology 41: 8018-8023. Kuss, J., C. Zülicke, C. Pohl and B. Schneider (2011). Atlantic mercury emission determined from continuous analysis of the elemental mercury sea‐air concentration difference within transects between 50°N and 50°S. Global Biogeochemical Cycles 25: GB3021. Lamborg, C. H., K. R. Rolfhus, W. F. Fitzgerald and G. Kim (1999). The atmospheric cycling and air sea exchange of mercury species in the South and equatorial Atlantic Ocean. Deep-Sea Research II 46: 957-977. Lamborg, C. H., W. F. Fitzgerald, J. O’donnell and T. Torgersen (2002). A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta 66: 1105–1118. Lanzillotta E., Ceccarini C. and Ferrara R. (2002). Photo-induced formation of dissolved gaseous mercury in coastal and offshore seawater of the Mediterranean basin. The Science of the Total Environment 300: 179-187. Li, P. N., Woo, J. H., Carmichael, G. R., Tang, Y., Friedli, H. R., and Radke, L. F. (2006) Regional distribution and emissions of mercury in east Asia: a modeling analysis of Asian Pacific regional aerosol characterization experiment (ACE-Asia) observations. Journal of Geophysical Research 111: D07109. Lindberg, S. E., W. Dong and T. Meyers (2002). Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Florida. Atmospheric Environment 36: 5207-5219. Marumoto K., Imai S., Takeda K. and Sakugawa H (2012). Development of seawater sampler for collection of dissolved gaseous mercury preventing vaporization loss and influence of the loss on estimating mercury flux. Bunseki Kagaku 61: 1063-1072. Mason, R. P. and W. F. Fitzgerald (1993). The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Research l 40: 1897-1924. Mason, R. P., W. F. Fitzgerald and F. M. M. Morel (1994). The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta 58: 3191-3198. Mason, R. P., K. R. Rolfhus and W. F. Fitzgerald (1998). Mercury in the North Atlantic. Marine Chemistry 61: 37-53. Mason, R. P., N. M. Lawson, A. L. Lawrence, J. J. Leaner, J. G. Lee and G.-R. Sheu (1999). Mercury in the Chesapeake Bay. Marine Chemistry 65: 77-96. Mason, R. P. and K. A. Sullivan (1999). The distribution and speciation of mercury in the South and equatorial Atlantic. Deep-Sea Research II 46: 937-956. Mason, R. P., N. M. Lawson and G.-R. Sheu (2001). Mercury in the Atlantic Ocean: factors controlling air–sea exchange of mercury and its distribution in the upper waters. Deep-Sea Research II 48: 2829-2853. Mason, R. P. and G.-R. Sheu (2002). Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles 16: 40-1-40-14. Muresan, B., D. Cossa, S. Richard and B. Burban (2007). Mercury speciation and exchanges at the air–water interface of a tropical artificial reservoir, French Guiana. Science of the Total Environment 385: 132-145. Narukawa, M., M. Sakata, K. Marumoto and K. Asakura (2006). Air-Sea exchange of mercury in Tokyo bay. Journal of Oceanography 62: 249-257. Nerentorp, M., K. Gårdfeldt and I. Wängberg (2013). Comparison of two measurement methods of dissolved gaseous mercury concentrations and estimations of supersaturation grade and mercury fluxes during a research campaign at the Mediterranean Sea. E3S Web of Conferences 1. Poissant, L., M. Amyot, M. Pilote and D. Lean (2000). Mercury water-air exchange over the upper St. Lawrence river and lake Ontario. Environmental Science & Technology 34: 3069-3078. Poissant, L., M. Pilote, P. Constant, ConradBeauvais, H. H. Zhang and X. Xu (2004). Mercury gas exchanges over selected bare soil and flooded sites in the bay St. Francois wetlands (Quebec,Canada). Atmospheric Environment 38: 4205-4214. Rolfhus, K. R. and W. F. Fitzgerald (2001). The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY. Geochimica et Cosmochimica Acta 65: 407-418. Sanemasa, I. (1975) The solubility of elemental mercury vapor in water. Bulletin of the Chemical Society of Japan 48: 1795–1798. Selin, N. E., D. J. Jacob, R. J. Park, R. M. Yantosca, S. Strode, L. Jaegle and D. Jaffe (2007). Chemical cycling and deposition of atmospheric mercury: global constraints from observations. Journal of Geophysical Research 112: D02308. Soerensen, A. L., E. M. Sunderl, C. D. Holmes, D. J. Jacob, R. M. Yantosca, H. Skov, J. H. Christensen, S. A. Strode and R. P. Mason (2010). An improved global model for air-sea exchange of mercury: high concentrations over the north Atlantic. Environmental Science & Technology 44: 8574-8580. Soerensen, A. L., R. P. Mason, P. H. Balcom and E. M. Sunderland (2013). Drivers of surface ocean mercury concentrations and air-sea exchange in the west Atlantic ocean. Environmental Science & Technology 47: 7757-7765. Soerensen, A. L., R. P. Mason, P. H. Balcom, D. J. Jacob, Y. Zhang, J. Kuss and E. M. Sunderland (2014). Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean. Environmental Science & Technology 48: 11312-11319. Strode, S. A., L. Jaegle, N. E. Selin, D. J. Jacob, R. J. Park, R. M. Yantosca, R. P. Mason and F. Slemr (2007). Air-sea exchange in the global mercury cycle. Global Biogeochemical Cycles 21: GB1017. Sunderland, E. M. and R. P. Mason (2007). Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles 21: GB4022. Swartzendruber P. C., Jaffe D. A., Prestbo E. M., Weiss-Penzias P., Selin N. E., Park R., Jacob D. J., Strode S., and Jaegle L (2006). Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. Journal of Geophysical Research 111: D24301. Tseng C. M., Balcom, P.H., Lamborg, C.H., and Fitzgerald, W.F. (2003). Dissolved elemental mercury investigations in Long Island Sound using on-line Au amalgamation-flow injection analysis. Environmental Science and Technology 37: 1183-1188. Tseng, C. M., C. Lamborg, W. F. Fitzgerald and D. R. Engstrom (2004). Cycling of dissolved elemental mercury in Arctic Alaskan lakes. Geochimica et Cosmochimica Acta 68: 1173-1184. Tseng C. M., George T.F. Wong, I. I. Lin, C. R. Wu, and K.-K. Liu (2005). A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea, Geophysical Research Letters 32: L08608. Tseng, C. M., Lamborg C. H. and Fitzgerald W. F(2010). Development of a novel on-line flow injection mercury analyzer to determine gaseous elemental mercury over the northern South China Sea. Journal of Analytical Atomic Spectrometry 25: 526-533. Tsubaki, T. and K. Irukayama (1997). Minamata disease: methylmercury poisoning in Minamata and Niigata, Japan. 143-253. UNEP, 2013. Global mercury assessment 2013: sources, emissions, releases and environmental transport. USEPA, 1997. Mercury study report to congress, EPA-452/R-97-004; Office of Air Quality and Standards, Office of Research and Development, U.S. Government Printing Office: Washington, DC, 1997. USEPA, 2000. Mercury research strategy, EPA/600/R-00/073; Office of Research and Development, U.S. Government Printing Office: Washington, DC, 2000. Valiela, I. (1995). Marine ecological processes. Springer. 268-270. Wangberg, I., Schmolke S., Schager P., Munthe J., Ebinghaus R. and Iverfeldta A. (2001). Estimates of air-sea exchange of mercury in the Baltic Sea. Atmospheric Environment 35: 5477-5484. Wanninkhof R. (1992) Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97: 7373–7382. Witt, M. L. I., T. A. Mather, A. R. Baker, J. C. M. De Hoog and D. M. Pyle (2010). Atmospheric trace metals over the south-west Indian Ocean: Total gaseous mercury, aerosol trace metal concentrations and lead isotope ratios. Marine Chemistry 121(1-4): 2-16. Xiao, Z. F., J. Munthe, W. H. Schroeder, and O. Lindqvist (1991). Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus B, 43(3): 267-279. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51108 | - |
dc.description.abstract | 本研究主要研究南海海域汞的大氣循環及海氣交換,於2003至2007年間,共有十六次航次,搭乘海研一號至南海時序 (Southeast Asian Time-Series Station, SEATS) 測站進行採樣及分析。航次中進行現場測定,觀測大氣中元素汞(GEM, Gaseous elemental mercury, Hg0)及表水中元素汞(DEM, Dissolved elemental mercury) 濃度。在大氣汞方面,各季節平均分別3.2 ± 0.6 ng m-3、2.8 ± 0.4 ng m-3、3.6 ± 0.6 ng m-3、4.5 ± 1.5 ng m-3,其中夏季最低,冬季為最高。在水氣汞方面,各季節平均分別為70 ± 40 fM、160 ± 40 fM、120 ± 30 fM、60 ± 30 fM,呈現一個夏季高、冬季低的趨勢,與大氣汞的趨勢相反。大氣汞與水氣汞濃度的趨勢並不相同,顯示主要影響二者濃度的原因並不相同。本研究使用HYSPLYT模式追蹤當時氣團軌跡發現,冬季盛行東北季風,帶來歐亞大陸的陸緣物質及人為活動汙染物,使得大氣元素汞濃度升高。夏天盛行西南季風和季風交替期間,帶來中南半島和印度洋和西太平洋上方汙染較少的氣團,故大氣元素汞濃度較低。夏季水氣汞濃度較高,冬季則較低,此一現象同溫度變化趨勢一致。利用水氣汞濃度及表水溫度計算溫度係數Q10,結果推測此一季節性變化主要由非生物因素主導。根據海氣交換通量公式估算,汞的海氣交換通量在春天 (60 ± 160 pmol m-2 d-1)、夏天 (580 ± 120 pmol m-2 d-1) 及秋天 (730 ± 210 pmol m-2 d-1) ,由海洋逸散至大氣(源),而冬天則有一個相反的方向(-180 ± 110 pmolm-2d-1),由大氣傳輸至海洋(匯)。冬季南海元素汞由大氣傳輸至海洋,係因較低的海表面溫度及較高的風速,造成水團的垂直混合較強,並且大氣汞濃度較高的關係,使得元素汞的海氣交換在冬季有此一特殊匯的現象,與其他低緯度海域觀測結果不同。 | zh_TW |
dc.description.abstract | Atmospheric cycling and air-sea exchange of mercury in the northern South China Sea (SCS) were investigated during 16 cruises of the SEATS (Southeast Asian Time-series Study) station between 2003 and 2007. The GEM (Gaseous elemental mercury, Hg0) and DEM (Dissolved elemental mercury) were measured all together on board ship during the cruise period. The GEM concentrations in spring, summer, autumn and winter averaged ca. 3.2 ± 0.6 ng m-3, 2.8 ± 0.4, 3.6 ± 0.6, and 4.5 ± 1.5, respectively. Additionally, seasonal DEM concentrations were 70 ± 40 fM, 160 ± 40, 120 ± 30, and 60 ± 30, respectively. Unlike the annual GEM pattern, the DEM concentrations were high in summer and low in winter. The opposite temporal trends between the GEM and DEM implied different controlling factors on those concentration variations. Source tracking through backward air trajectory of The HYSPLYT model demonstrated that the GEM concentrations were strongly influenced by seasonal monsoons. In winter, the prevailing northeast monsoon with terrigenous and anthropogenic pollutants resulted in high GEM concentrations. Instead, the summer southwest monsoon and inter-monsoon with less polluted air masses from the Indochina Peninsula and Indian Ocean and west Pacific Ocean resulted in low GEM levels. The DEM concentrations were highly correlated with sea water temperature (SST), showing high in summer and low in winter. The Q10 temperature coefficient calculation of DEM suggested that a seasonal change in DEM was mostly abiologically driven. Annually, the air-sea Hg0 exchange fluxes were estimated ca. 60 ± 160 pmol m-2 d-1, 580 ± 120, and 730 ± 210 in spring, summer and autumn, respectively, indicating that the SCS could be the source of Hg0 to the atmosphere in warm seasons. In winter, the SCS acted as a sink of atmospheric Hg0 (-180 ± 110 pmol m-2 d-1) due to low SST and high wind of the year, enhanced vertical mixing and elevated atmospheric Hg0. This is the first time we observed that ocean behaves as a sink of atmospheric Hg0 in low latitude marginal seas.
Key words: South China Sea (SCS), Atmospheric cycling, Air-sea exchange, Gaseous elemental mercury (GEM) and Dissolved elemental mercury (DEM) | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:25:20Z (GMT). No. of bitstreams: 1 ntu-105-R00241402-1.pdf: 1882960 bytes, checksum: d4382dfcdf7b1cd4d186c4c9f21db983 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 表目錄 IV 圖目錄 V 第一章 緒論 1 1.1 汞研究的重要性 1 1.2 汞在環境中的循環及物種分布 2 1.3 汞的海氣交換現況 4 1.4 研究動機與目的 6 第二章 研究材料與方法 7 2.1 研究區域 7 2.2 材料與方法 9 2.2.1 本研究測定的汞物種及定義 9 2.2.2 試劑與標準品 9 2.2.3 實驗各項器材之前處理 9 2.2.4 大氣元素汞的採樣與分析 9 2.2.5 水樣汞的採樣方法與分析 11 2.2.6 水樣汞測定之方法 13 2.3 其他參數取得 13 第三章 結果與討論 15 3.1 大氣元素汞、水氣汞與各項水文氣象參數2003年至2007年之時序變化 15 3.2 大氣元素汞(GEM)濃度分布的探討 18 3.3 水氣汞(DEM)濃度分布之探討 21 3.4 元素汞海氣交換通量的探討 23 3.5 全球元素汞 (Hg0) 海氣交換通量分布探討 25 第四章 結論 31 參考文獻 32 表1.1 大氣汞的主要組成 (Swartzendruber et al., 2006) 3 表1.2 人為活動產生大氣汞排放量 (譯自UNEP, 2013) 5 表2.1 2003年至2007年各航次觀測時間 7 表3.1 2003至2007年KK1測站GEM、DEM及其他水文參數季節平均(括弧內顯示範圍) 17 表3.2 DEM與各水文參數相關係數表(R值) 22 表3.3 各模式估算全球Hg0海氣交換通量之文獻 26 表3.4 各文獻Hg0及其海氣交換通量之資料 29 圖1.1 汞循環及各種傳輸途徑之通量 (Lamborg et al., 2002) 3 圖1.2 各緯度地區大氣汞濃度觀測值 (Lamborg et al., 2002) 4 圖2.1 本研究採樣位置及航行軌跡圖 8 圖2.2 大氣汞自動分析儀器組件簡圖 11 圖2.3 水樣汞分析儀器組件簡圖 (Tseng et al. 2003) 13 圖3.1 2003至2007年南海KK1站水文氣象參數之時序關係圖 16 圖3.2 各航次氣流軌跡路徑及GEM濃度分布圖 19 圖3.3 東亞地區汞排放之空間分布圖 (改自Li et al., 2006) 20 圖3.4 2003至2007期間KK1測站月平均資料 24 圖3.5汞海氣交換研究各文獻之採樣分布圖 26 圖3.6 各文獻之GEM濃度分布圖 27 圖3.7 各文獻之DEM濃度分布圖 27 圖3.8 各文獻之Hg0海氣交換通量分布圖 28 圖 3.9 全球各水型所占面積及每年Hg0輸出通量之比例 28 | |
dc.language.iso | zh-TW | |
dc.title | 南海海域汞的大氣循環及海氣交換研究 | zh_TW |
dc.title | Atmospheric Cycling and Air-Sea Exchange of Mercury in the South China Sea | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃國芳(Kuo-Fang Huang),陳宗岳(Tzong-Yueh Chen) | |
dc.subject.keyword | 南海,大氣循環,海氣交換,大氣汞,水氣汞, | zh_TW |
dc.subject.keyword | South China Sea (SCS),Atmospheric cycling,Air-sea exchange,Gaseous elemental mercury (GEM),Dissolved elemental mercury (DEM), | en |
dc.relation.page | 39 | |
dc.identifier.doi | 10.6342/NTU201600197 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-05-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。