請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51103
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 程舜仁(Shun-Jen Cheng) | |
dc.contributor.author | Chih-Whi Chen | en |
dc.contributor.author | 陳志瑋 | zh_TW |
dc.date.accessioned | 2021-06-15T13:25:15Z | - |
dc.date.available | 2021-06-11 | |
dc.date.copyright | 2016-06-11 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-05-25 | |
dc.identifier.citation | [AL03] H.H. Andersen, N. Lauritzen; Twisted Verma modules. Studies in memory of Issai Schur, Progr. Math., 210, Birkhぴauser Boston, Boston, MA, 2003, 1-26
[AS03] H. H. Andersen and C. Stroppel; Twisting functors on O. Represent. Theory 7 (2003), 681-699. [Ar97] S. Arkhipov; Semi-infinite cohomology of associative algebras and bar duality. Internat. Math. Res. Notices 1997, 833-863. [Ba] Backelin, Erik. Koszul duality for parabolic and singular category $mc O$. Represent. Theory Amer.Math.Soc. 3.7 (1999): 139-152. [Br1] J.Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n), J~Amer.Math.Soc. 16 (2003), 185-231. [Br2] J.Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra q(n), Adv. Math. 182 (2004), 28-77. [Br3] J.Brundan, Tilting modules for Lie superalgebras, Comm. Algebra 32 (2004), 2251-2268. [BLW] J. Brundan, I. Losev, B. Webster, Tensor product categorifications and the super Kazhdan-Lusztig conjecture, preprint, arXiv:1310.0349. [BS12]J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. 14 (2012), 373-419. [BW] H.Bao and W.Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, arXiv:1310.0103. [Bo09]B. D. Boe, J. R. Kujawa, D. K. Nakano. Cohomology and support varieties for Lie superalgebras II, Proc. Lond. Math. Soc. 98, 19-44 (2009) [Boe09]B. D. Boe, J. R. Kujawa, and D. K. Nakano. Complexity and module varieties for classical Lie Superalgebras. ArXiv e-prints, 2009. [Ben91]D. J. Benson, ``Representations and Cohomology I, Cambridge Studies in Advances Mathematics, Vol. 30, Cambridge Univ.Press(1991). [BS12] J.Brundan and C.Stroppel, Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup, J.Eur.Math.Soc. 14 (2012) 373-419. [CHR15]M.Chmutov, C.Hoyt and S.Reif, Kac-Wakimoto character formula for the general linear Lie superalgebra, Algebra and Number Theory 9 (2015), 1419-1452. [Ch15] C.-W.Chen, Finite-dimensional representations of periplectic Lie superalgebras, J. Algebra 443 (2015) 99-125. [Ch16] C.-W.Chen, Reduction method for representations of queer Lie superalgebras, J. Math.Phys., accepted. [CC16]C.-W.Chen and S.-J.Cheng, Quantum group of type A and representations of queer Lie superalgebra, arXiv:1602.04311. [CK16]S.-J.Cheng and J.-H.Kwon,Finite-dimensional half-integer weight modules over queer Lie superalgebras, Commun.~Math.~Phys (2016), (DOI) 10.1007/s00220-015-2544-0. [CKW15] S.-J.Cheng, J.-H.Kwon and W.Wang, Character formulae for queer Lie superalgebras and canonical bases of type C, arXiv:1512.00116. [CKL08] S.-J.Cheng, J.-H.Kwon, and N. Lam, BGG-type resolution for tensor modules over general linear superalgebra, Lett.Math.Phys. 84 (2008), 75-87. [CL10] S.-J.Cheng and N.Lam, Irreducible characters of general linear superalgebra and super duality, Commun.Math.Phys. 280 (2010), 645-672. [CL15] B.Cao and N.Lam, An inversion formula for some Fock spaces, arXiv:1512.00577. [CLW11] S.-J.Cheng, N.Lam, W.Wang, Super duality and irreducible characters of orthosymplectic Lie superalgebras, Invent.Math. 183 (2011), 189-224. [CLW15] S.-J.Cheng, N.Lam, and W.Wang, Brundan-Kazhdan-Lusztig conjecture for general linear Lie superalgebras, Duke Math.J.110 (2015), 617-695. [CMW13]S.-J. Cheng, V. Mazorchuk, and W. Wang, Equivalence of blocks for the general linear Lie superalgebra, Lett. Math. Phys. 103 (2013), 1313-1327. [CM14]K. Coulembier and V. Mazorchuk, Primitive ideals, twisting functors and star actions for classical Lie superalgebras. Accepted in J. Reine Ang. Math. doi: 10.1515/crelle-2014-0079. [Cou14]K. Coulembier. Bernstein-Gelfand-Gelfand resolutions for basic classical Lie superalgebras, J. Algebra 399 (2014),131-169. [CW08] S.-J. Cheng and W. Wang, Brundan-Kazhdan-Lusztig and super duality conjectures},Publ. Res. Inst. Math. Sci. 44 (2008), 1219-1272. [CW12]S.-J.Cheng and W.Wang, Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics 144. American Mathematical Society, Providence, RI, 2012. [FM09]A.Frisk and V. Mazorchuk, Regular Strongly Typical Blocks of Oq, Commun.Math.Phys. 291 (2009), 533–542. [Fr07] A.Frisk, Typical blocks of the category O for the queer Lie superalgebra, J. Algebra Appl. 6 (2007), no. 5, 731-778. [GG14]M.Gorelik and D. Grantcharov, Q-type Lie superalgebras. In: M.Gorelik and P.Papi (Eds.), Advances in Lie superalgebras, 67–89, Springer INdAM Ser. 7, Springer, Cham, 2014. [Ger98] J. Germoni, Indecomposable representations of special linear Lie superalgebras, J. Algebra 209 (1998) 367-401. [Go00] M. Gorelik, On the ghost centre of Lie superalgebras}. Ann. Inst. Fourier (Grenoble) 50 (2000), no. 6, 1745–1764 (2001). [Go01] M. Gorelik, The center of a simple p-type Lie superalgebra,J. Algebra 246 (2001) 414-428. [GS10]C.Gruson and V.Serganova, Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras, Proc.Lond.Math.Soc. 101 (2010), 852-892. [GG13] M. Gorelik, D. Grantcharov, Bounded highest weight modules over q(n). Int. Math.Res. Not. (2013) doi:10.1093/imrn/rnt14 [Hum08]J. Humphreys, Representations of semisimple Lie algebras in the BGG category O, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. [Jim86] M. Jimbo, A q-analogue of U(gl(N + 1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247-252. [Jan03]J. C. Jantzen, Representations of algebraic groups, 2ed., Mathematical Surveys and Monographs, vol. 107. Providence, RI: American Mathematical Society, 2003. [JMO00] N.Jing, K.Misra, and M.Okado, q-Wedge Modules for Quantized Enveloping Algebra of Classical Type, J.Algebra 230 (2000), 518-539. [KM05]O. Khomenko and V. Mazorchuk; On Arkhipov’s and Enright’s functors. Math. Z. 249 (2005), 357-386. [Kac78]V. G. Kac, Representations of classical Lie superalgebras,in Lecture Notes in Math., Vol. 676, pp. 597-626,Springer-Verlag, 1978.} [Kac77]V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8-96. [Kum02]S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204. Birkhauser Boston, Inc., Boston, MA, 2002. [KMS95] M. Kashiwara, T. Miwa, and E. Stern, Decomposition of q-deformed Fock spaces}, Selecta Math. (N.S.) 1 (1995), 787–805. [KW14] V. G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions, Transform. Groups 19 (2014), 383-455. [LSS86] D.Leites, M.Saveliev and V.Serganova, Embedding of osp(N/2) and the associated non-linear supersymmetric equations. Group theoretical methods in physics, Vol.I (Yurmala, 1985), 255-297, VNU Sci. Press, Utrecht, 1986. [Lu90]G. Lusztig, Canonical bases arising from quantized enveloping algebras, J.Amer.Math.Soc. (1990), 447-498. [Lu92]G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. 89 (1992), 8177-8179. [Lu93]G. Lusztig, Introduction to quantum groups, Progress in Math. 110, Birkhauser, 1993. [Mac95]I.G.Macdonald, Symmetric functions and Hall polynomials, Second Edition, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. [MS07]V. Mazorchuk, C. Stroppel, On functors associated to a simple root. J. Algebra 314 (2007), no. 1, 97-128. [Mar10L]V. Mazorchuk; Lectures on sl2(C) -modules. Imperial College Press, London, 2010. [Mar10C] V. Mazorchuk, Classification of simple q2-supermodules. Tohoku Math. J. (2) 62 (2010),no. 3, 401–426. [Mar14]V. Mazorchuk, Parabolic category O for classical Lie superalgebras. In: M.~Gorelik and P. Papi (Eds.), Advances in Lie superalgebras, 149-166, Springer INdAM Ser. 7, Springer, Cham, 2014. [MO00]O.Mathieu. Classification of irreducible weight modules. Annales de l'institut Fourier 50.2 (2000) 537-592. [Mu12] I.Musson, Lie superalgebras and enveloping algebras}, Graduate Studies in Mathematics, 131. American Mathematical Society, Providence, RI, 2012. [OV90]A. L. Onishchik and E. B. Vinberg, `Lie groups and algebraic groups,Springer Series in Soviet Mathematics, Springer-Verlag, Berlin,1990. Translated from the Russian and with a preface by D. A. Leites. [Pe]I.Penkov, Characters of typical irreducible finite-dimensional q(n)-modules, Funct. Anal. App. 20 (1986), 30--37. [PS1]I.Penkov and V.Serganova, Characters of Finite-Dimensional Irreducible q(n)-Modules, Lett. Math. Phys. 40 (1997), 147-158. [PS2]I.Penkov and V.Serganova, Characters of irreducible G-modules and cohomology of G/P for the supergroup G=Q(N), J. Math. Sci., 84 (1997), 1382-1412. [PS89]I. Penkov and V. Serganova, Cohomology of G/P for classical complex Lie supergroups G and characters of some atypical G-modules, Ann. Inst. Fourier 39 (1989), 845-873. [Sch87]M. Scheunert, Invariant supersymmetric multilinear forms and the Casimir elements of P-type Lie superalgebras, J. Math. Phys. 28 (1987), 1180-1191. [Sch79]M. Scheunert, The Theory of Lie Superalgebras: An Introduction. Springer, 1979. [Ser96] V.Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra gl(n)}, Selecta Math. (N.S.) 2 (1996), 607-651. [Ser98]V.Serganova, Characters of irreducible representations of simple Lie superalgebras, Doc.Math., Extra Volume ICM II(1998), 583-593. [Ser02]Vera Serganova, On representations of the Lie superalgebra p(n),J. Algebra 258 (2002), no. 2, 615-630. [Sho02] N. Shomron, Blocks of Lie superalgebras of type W(n), J. Algebra 251 (2002),739-750. [So98] W.Soergel, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory (electronic) 2 (1998), 432-448. [Sv83] A.Sergeev, The centre of enveloping algebra for Lie superalgebra Q(n,C), Lett.Math.Phys. 7 (1983), 177-179. [Sv85]A.Sergeev, The tensor algebra of the identity representation as a module over the Lie superalgebras gl(n,m) and Q(n), Math. USSR Sbornik 51 (1985), 419-427. [SZ07] Y.Su and R.B.Zhang, Character and dimension formulae for general linear superalgebra, Adv. Math. 211 (2007) 1-33. [Zou96]Y. M. Zou, Categories of finite-dimensional weight modules over type I classical Lie superalgebras, J. Algebra 180 (1996) 459-482. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51103 | - |
dc.description.abstract | 本博士論文主要研究奇特型李超代數的表現理論, 並分成三個部分。 首先,我們研究 Periplectic 李超代數的(整權)有限維模範疇, 並且得到了 BGG 型之互反律。 特別地, 僅存在有限個不可分解的區塊。 我們亦計算了秩為2 與3 之Periplectic 李超代數的不可約特徵標, 並得到了對於秩為2,3,4 之Periplectic 李超代數的區塊描述。 在第二個部分, 我們對 Queer 李超代數的BGG 範疇發展了約化方法。 我們也建立了在某個 Queer 李超代數的極大拋物子範疇與一般線性李超代數的有限維模範疇區塊之間的等價。 在最後的章節,我們對Queer 李超代數的極大拋物子範疇證明了 Kazhdan-Lusztig 型猜想。 作為應用, 我們得到與一般線性李超代數之模範疇情況相似的封閉不可約特徵標公式。 | zh_TW |
dc.description.abstract | In this dissertation, we study the representation theory of strange Lie superalgebras. It is divided into three parts. In the first part, we study categories of finite-dimensional modules over the periplectic Lie superalgebras $mathfrak{p}(n)$ and obtain a BGG type reciprocity. In particular, these categories have only finitely-many blocks. We also compute the characters for irreducible modules over periplectic Lie superalgebras of ranks $2$ and $3$, and obtain explicit description of the blocks for ranks $2$, $3$, and $4$. In the second part, we develop a reduction procedure which provides an equivalence from an arbitrary block of the BGG category for the queer Lie superalgebra $mathfrak{q}(n)$ to a block with weights in $Lambda_{{ell_1},s_{1}}(n_1) imes cdots imes Lambda_{{ell_k},s_{k}}(n_{k})$ (see, Theorem
ef{FirstMainThm}) for a BGG category of finite direct sum of queer Lie superalgebras. The descriptions of blocks are given as well. We also establish equivalences between certain maximal parabolic subcategories for $mathfrak{q}(n)$ and blocks of atypicality-one of the category of finite-dimensional modules for $mathfrak{gl}(ell|n-ell)$, where $ell leq n$. In the third part, we establish a maximal parabolic version of the Kazhdan-Lusztig conjecture cite[Conjecture 5.10]{CKW} for the BGG category $mathcal{O}_{k,zeta}$ of $mathfrak{q}(n)$-modules of ``$pm zeta$-weights', where $kleq n$ and $zetainCsetminushf $. As a consequence, the irreducible characters of these $mathfrak q(n)$-modules in this maximal parabolic category are given by the Kazhdan-Lusztig polynomials of type $A$ Lie algebras. As an application, closed character formulas for a class of $mathfrak q(n)$-modules resembling polynomial and Kostant modules of the general linear Lie superalgebras are obtained. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:25:15Z (GMT). No. of bitstreams: 1 ntu-105-D00221002-1.pdf: 2542351 bytes, checksum: ecea3d2bc6c7b79bd5af795c62c8f794 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 1 Introduction 9
1.1 Periplectic Lie superalgebras . . . . . . . . . . . . . . . . . . . . . 10 1.2 Queer Lie superalgebras . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I Representation theory of periplectic Lie superalgebras 15 2 Finite-dimensional representations 17 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 The Lie superalgebra ep(n) . . . . . . . . . . . . . . . . . . 17 2.1.2 (Opposite) Kac Modules. . . . . . . . . . . . . . . . . . . 18 2.1.3 The category of nite-dimensional h-semisimple representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Odd Reections for ep(n) . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Typical representations . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Irreducible Characters of p(2) and p(3) . . . . . . . . . . . . . . . 31 2.4.1 Irreducible Characters of p(2) . . . . . . . . . . . . . . . . 31 2.4.2 The Irreducible Characters of p(3) . . . . . . . . . . . . . . 32 2.5 BGG Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 Tilting Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.7 Kazhdan-Lusztig Polynomials . . . . . . . . . . . . . . . . . . . . 45 3 Blocks 49 3.1 Combinatorial descriptions . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Blocks for F0n and 0 F0n . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Blocks for Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 II Representation theory of queer Lie superalgebras 69 4 Introduction 71 5 Reduction methods 73 5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.1 Lie superalgebras gl and q . . . . . . . . . . . . . . . . . . 74 5.1.2 Categories of modules . . . . . . . . . . . . . . . . . . . . 75 5.2 Equivalences and Reductions for Blocks . . . . . . . . . . . . . . . 77 5.2.1 Equivalence using twisting functors . . . . . . . . . . . . . 77 5.2.2 Equivalence using parabolic induction functor . . . . . . . 79 5.2.3 Description of blocks . . . . . . . . . . . . . . . . . . . . . 82 6 Equivalence of parabolic categories 85 6.1 Categories of finite-dimensional gl-modules . . . . . . . . . . . . . 86 6.2 Equivalences for parabolic categories . . . . . . . . . . . . . . . . 87 III Irreducible characters for q(n)-modules 97 7 Introduction 99 8 Quantum group U q (gl ∞ ) 101 8.1 Quantum group of type A . . . . . . . . . . . . . . . . . . . . . . 101 8.2 Fock space E m|n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.3 Canonical and dual canonical bases of E m|n . . . . . . . . . . . . . 104 8.4 Procedure for canonical basis . . . . . . . . . . . . . . . . . . . . 105 9 Representations of q(n) 107 9.1 Λ r,l k,ζ -weights and Z-gradations . . . . . . . . . . . . . . . . . . . . 107 9.2 Characters of irreducible l r,l -modules . . . . . . . . . . . . . . . . 109 9.3 Parabolic BGG categories . . . . . . . . . . . . . . . . . . . . . . 110 9.4 Tilting modules in parabolic categories . . . . . . . . . . . . . . . 112 10 A Kazhdan-Lusztig type conjecture 115 10.1 Formulation of the Kazhdan-Lusztig conjecture in F k,ζ . . . . . . 115 10.2 Serganova’s fundamental lemma for F k,ζ . . . . . . . . . . . . . . 116 10.3 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . 118 11 Kac-Wakimoto type formulas 123 11.1 Kac-Wakimoto type character formulas . . . . . . . . . . . . . . . 123 11.2 Sergeev-Pragacz type character formulas . . . . . . . . . . . . . . 127 11.3 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Bibliography 133 | |
dc.language.iso | en | |
dc.title | 奇特型李超代數的表現理論 | zh_TW |
dc.title | Representation theory of strange Lie superalgebras | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林牛(Ngau Lam),林正洪(Ching Hung Lam),蔡孟傑(Meng-Kiat Chuah),彭勇寧(Yung-Ning Peng) | |
dc.subject.keyword | Periplectic 李超代數,不可約特徵標,BGG 型之互反律,Queer 李超代數,BGG 範疇,Kazhdan-Lusztig 型猜想, | zh_TW |
dc.subject.keyword | Periplectic Lie superalgebra,irreducible character,BGG reciprocity,queer Lie superalgebra,BGG category,Kazhdan-Lusztig conjecture, | en |
dc.relation.page | 139 | |
dc.identifier.doi | 10.6342/NTU201600258 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-05-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。