Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51085
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor劉霆
dc.contributor.authorI-Ming Chenen
dc.contributor.author陳羿名zh_TW
dc.date.accessioned2021-06-15T13:24:56Z-
dc.date.available2017-07-06
dc.date.copyright2016-07-06
dc.date.issued2016
dc.date.submitted2016-06-07
dc.identifier.citation[1] D. Margolis and L. Cleveland. 'All wheel independent torque control.' SAE Technical Paper, 1988.
[2] H. Nakazato, K. Iwata, and, Y. Yoshioka. 'A new system for independently controlling braking force between inner and outer rear wheels.' SAE Technical Paper, 1989.
[3] S. M. Engineer, H. U. Engineer, K. I. Manager, and H. Y. Manager. 'Effect of traction force distribution control on vehicle dynamics.' Vehicle System Dynamics, vol. 22, no. 5–6, pp. 455–464, 1993.
[4] G. Buschmann, H. Ebner, and W. Kuhn, 'Electronic brake force distribution control - A sophisticated addition to ABS.' SAE Technical Paper, 1992.
[5] M. Nakazawa, O. Isobe, S. Takahashi, and Y. Watanabe. 'Braking force distribution control for improved vehicle dynamics and brake performance.' Vehicle System Dynamics, vol. 24, no. 4–5, pp. 413–426, 1995.
[6] H. Peng and J.-S. Hu. 'Traction/braking force distribution for optimal longitudinal motion during curve following.' Vehicle System Dynamics, vol. 26, no. 4, pp. 301–320, 1996.
[7] R. P. Osborn and T. Shim. 'Independent control of all-wheel-drive torque distribution.' Vehicle System Dynamics, vol. 44, no. 7, pp. 529-546, 2006.
[8] R. J. Rieveley and B. P. Minaker. 'Variable torque distribution yaw moment control for hybrid powertrains.' SAE Technical Paper, 2007.
[9] I. Karogal and B. Ayalew. 'Independent torque distribution strategies for vehicle stability control.' SAE Technical Paper, 2009.
[10] E. K. Liebemann, K. Meder, J. Schuh, and G. Nenninger. 'Safety and performance enhancement: The Bosch electronic stability control (ESP).' SAE Technical Paper, 2004.
[11] A. T. Van Zanten. 'Bosch ESP systems: 5 years of experience.' SAE Technical Paper, 2000.
[12] R. Willig and M. Mörbe. 'New generation of inertial sensor cluster for ESP- and future vehicle stabilizing systems in automotive applications.' SAE Technical Paper, 2003.
[13] D. Kim, K. Kim, W. Lee, and I. Hwang. 'Development of mando ESP (Electronic Stability Program) .' SAE Technical Paper, 2003.
[14] C. M. Farmer, “Effect of Electronic Stability Control on Automobile Crash Risk,” Traffic Injury Prevention, vol. 5, no. 4, pp. 317–325, Dec. 2004.
[15] A. Lie, C. Tingvall, M. Krafft, and A. Kullgren, 'The Effectiveness of ESP (Electronic Stability Program) in Reducing Real Life Accidents,' Traffic Injury Prevention, vol. 5, no. 1, pp. 37–41, Mar. 2004.
[16] A. Morgando. 'Linear approach to ESP control logic design.' SAE Technical Paper, 2006.
[17] E. Sabbioni, L. Kakalis, and F. Cheli. 'On the impact of the maximum available tire-road friction coefficient awareness in a brake-based torque vectoring system.' SAE Technical Paper, 2010.
[18] V. V. Vantsevich and G. Bortolin. 'Axle drive and brake-based traction control interaction.' SAE International Journal of Commercial Vehicles, vol. 4, no. 1, pp. 49–55, 2011.
[19] Bosch Media Service, 2010. “The first generation of Electronic Stability Program from Bosch.” Available at: http://www.bosch-presse.de/presseforum/details.htm?txtID=4731&locale=en
(Accessed in Apr. 26, 2016).
[20] A. E. Rojas Rojas, H. Niederkofler, and W. Hirschberg. 'Mechanical design of in-wheel motor driven vehicles with torque-vectoring.' SAE Technical Paper, 2011.
[21] J. Kang, Y. kyongsu, and H. Heo. 'Control allocation based optimal torque vectoring for 4WD electric vehicle.' SAE Technical Paper, 2012.
[22] K. Jalali, T. Uchida, S. Lambert, and J. McPhee. 'Development of an advanced torque vectoring control system for an electric vehicle with in-wheel motors using soft computing techniques.' SAE International Journal of Alternative Powertrains, vol. 2, no. 2, pp. 261–278, 2013.
[23] L. De Novellis, A. Sorniotti, and P. Gruber. 'Optimal wheel torque distribution for a four-wheel-drive fully electric vehicle.' SAE International Journal of Passenger Cars - Mechanical Systems, vol. 6, no. 1, pp. 128–136, 2013.
[24] E. Sabbioni, F. Cheli, M. Vignati, and S. Melzi. 'Comparison of torque vectoring control strategies for a IWM vehicle.' SAE International Journal of Passenger Cars - Electronic and Electrical Systems, vol. 7, no. 2, pp. 565–572, 2014.
[25] Protean ELECTRIC, 2016. “Protean in-wheel motor expanded view.” Available at: http://www.proteanelectric.com/image-gallery/technical-art/?img=1506&gal=1503 (Accessed in Apr. 26, 2016).
[26] Area Motorsport, 2010. “Mfactory LSD Plate Limited Slip Diff LSD EP3 Civic Type R.” Available at: http://areamotorsport.co.uk/area-shop/mfactory-lsd-limited-slip-diff-ep3-civic-type-r/ (Accessed in Apr. 26, 2016).
[27] J. A. Barlage and J. L. Bolton. 'New traction-optimized front axle limited-slip differential for AWD all-terrain-vehicle.' SAE Technical Paper, 2000.
[28] C. S. Ross, C. E. Carey, T. Schanz, E. F. Gaffney, and M. Catalano. 'Development of an electronically-controlled, limited-slip differential (eLSD) for FWD applications.' SAE Technical Paper, 2007.
[29] V. Ivanović, Z. Herold, J. Deur, M. Hancock, and F. Assadian. 'Experimental Setups for Active Limited Slip Differential Dynamics Research.' SAE Technical Paper, 2008.
[30] T. M. Cameron, T. C. Jao, C. Hewette, T. McCombs, and D. DeGonia. 'Effect of limited slip clutch friction on the driveline dynamics of a rear wheel drive vehicle coasting in a turn.' SAE International Journal of Fuels and Lubricants, vol. 1, no. 1, pp. 873–882, 2008.
[31] C. Annicchiarico and R. Capitani. 'Torque vectoring of a formula SAE through semi active differential control.' SAE Technical Paper, 2014.
[32] ZF, 2016. “VECTOR DRIVE.” Available at: http://www.zf.com/corporate/en_de/products/product_range/cars/cars_vector_drive.shtml (Accessed in Apr. 26, 2016).
[33] J. Park and W. J. Kroppe. 'Dana torque vectoring differential dynamic TrakTM.' SAE Technical Paper, 2004.
[34] D. Showalter. 'Development of a compact torque vectoring axle for primary or secondary axles.' SAE International Journal of Passenger Cars - Mechanical Systems, vol. 1, no. 1, pp. 280–284, 2008.
[35] H. Huchtkoetter and T. Gassmann. 'Vehicle dynamics and torque management devices.' SAE Technical Paper, 2004.
[36] J. C. Wheals, M. Deane, S. Drury, G. Griffith, P. Harman, R. Parkinson, S. Shepherd, and A. Turner. 'Design and simulation of a torque vectoringTM rear axle.' SAE Technical Paper, 2006.
[37] M. Hancock. 'Vehicle handling control using active differentials.' Doctoral Thesis, Loughborough University, England, 2006.
[38] R. Kumar, B. K. Suda, S. Karande, D. Piyabongkarn, and C. Patil. 'Simulation and experimental study of torque vectoring on vehicle handling and stability.' SAE Technical Paper, 2009.
[39] J. Deur, V. Ivanović, M. Hancock, and F. Assadian. 'Modeling and analysis of active differential dynamics.' Control Journal of Dynamic Systems, Measurement, and Control, vol. 132, no. 6, pp. 061501–061514, 2010.
[40] J. C. Wheals, H. Baker, K. Ramsey, and W. Turner. 'Torque vectoring AWD driveline: Design, simulation, capabilities and control.' SAE Technical Paper, 2004.
[41] J. C. Wheals. 'Torque vectoring driveline: SUV-based demonstrator and practical actuation technologies.' SAE Technical Paper, 2005.
[42] S. K. Mohan and A. Sharma. 'Torque vectoring axle and four wheel steering: A simulation study of two yaw moment generation mechanisms.' SAE Technical Paper, 2006.
[43] T.-H. Yang. 'Multi-motor drive system with differential speed regulated by CVT.' Patent US20110160944 A1, USA, 2011.
[44] T.-H. Yang. 'Single-powered multi-CVT differential system with stabilizing device.' Patent US20110238243 A1, USA, 2011.
[45] T.-H. Yang. 'Individual-powered dual CVT differential system with stabilizing device.' Patent US20110237387 A1, USA, 2011.
[46] T.-H. Yang. 'Driving system having epicycle gear sets with dual output ends equipped with individually-controlled multiple speed-ratio device.' Patent US8649950 B2, USA, 2014.
[47] F. Buchsbaum and F. Freudenstein. 'Synthesis of kinematic structure of geared kinematic chains and other mechanisms.' Journal of Mechanisms, vol. 5, no. 3, pp. 357–392, 1970.
[48] F. Freudenstein and E. R. Maki. 'The creation of mechanisms according to kinematic structure and function.' Environment and Planning B: Planning and Design, vol. 6, no. 4, pp. 375 – 391, 1979.
[49] L.-W. Tsai, E. R. Make, T. Liu, N. G. Kapil. 'The categorization of planetary gear trains for automatic transmissions according to kinematic topology.' SAE Technical Paper, 1988.
[50] L.-W. Tsai. Mechanism Design: Enumeration of Kinematic Structures According to Function. CRC Press, Boca Raton, Florida, 2000.
[51] H.-S. Yan. Creative Design of Mechanical Devices. Springer, Berlin, 1998.
[52] H.-S. Yan. 'An approach for the reconstruction synthesis of lost ancient Chinese mechanisms.' International Symposium on History of Machines and Mechanisms, pp. 325–336, 2009.
[53] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg. System Dynamics: A Unified Approach. Wiley-Interscience, New York, 1990.
[54] C.-S. Jiang. ' The conceptual design method of hybrid power system.' Master Thesis, National Taiwan University, Taiwan, 2008
[55] I-M. Chen. 'Fuel-electric hybrid systems composed of mechanical clutching units for scooters.' Master Thesis, National Taiwan University, Taiwan, 2009.
[56] H.-K. Su. 'Design and analysis of hybrid power systems with variable inertia flywheel.' Master Thesis, National Taiwan University, Taiwan, 2010.
[57] P.-Y. Shih. 'Design and analysis of high efficient and multi-path continuously variable transmissions.' Master Thesis, National Taiwan University, Taiwan, 2011.
[58] C.-P. Jen. 'Conceptual design method of mechanical auto-transmissions for bicycles.' Master Thesis, National Taiwan University, Taiwan, 2012.
[59] Y.-H. Shao. 'Conceptual designs and evaluation of integrated multi-propulsion power trains.' Master Thesis, National Taiwan University, Taiwan, 2014.
[60] T.-H. Yang. 'Dual power driving system with epicycle gear sets transmitted in series.' Patent US8414435 B2, USA, 2013.
[61] J. Liu and H. Peng. 'Control optimization for a power-split hybrid vehicle.' American Control Conference, 2006.
[62] MathWorks SIMULINK, 2016. 'Simulation and model-based design.' Available at: http://www.mathworks.com/products/simulink/ (Accessed in May 2, 2016)
[63] A. Brahma, Y. Guezennec, and G. Rizzoni. 'Optimal energy management in series hybrid electric vehicles.' American Control Conference, Proceedings of the 2000, vol. 1, pp. 60–64, 2000.
[64] S. Delprat, J. Lauber, T. M. Guerra, and J. Rimaux. 'Control of a parallel hybrid powertrain: optimal control.' IEEE Transactions on Vehicular Technology, vol. 53, no. 3, pp. 872–881, 2004.
[65] I-M. Chen, T. Liu. 'Design and analysis of hybrid systems for scooters.' Chinese Journal of Mechanical Engineering, vol. 24, no.5, pp.752, 2011.
[66] pearltrees, 2014. 'Spiral bevel final drive.' Available at: http://www.pearltrees.com/j.mellor/transmission/id9765070/item100881657 (Accessed in Oct. 8, 2015).
[67] D. L. Milliken, E.M. Kasprzak, L. Daniel Metz, and W. F. Milliken. Race Car Vehicle Dynamics: Problems, Answers, and Experiments. SAE International, 2003.
[68] andreacollo, 2013. '2 news + differential gear.' Available at: https://andreacollo.wordpress.com/2013/09/23/2-news-differential-gears/ (Accessed in Oct. 8, 2015).
[69] Outback Travel Australia, 2015. 'Differential explained.' Available at: http://www.outbacktravelaustralia.com.au/4wd-mods-tech-torque/differentials-explained (Accessed in Oct. 8, 2015).
[70] MITSUBISHI club, 2005. 'Mitsubishi Lancer Evolution 2.0.' Available at: http://www.mitsubishiclub.cz/vozidlo/mitsubishi-lancer-evolution-570 (Accessed in May 8, 2016).
[71] MOTORAUTHORITY, 2007. 'ZF's new torque vectoring rear axle.' Available at: http://www.motorauthority.com/news/1027198_zfs-new-torque-vectoring-rear-axle (Accessed in Oct. 8, 2015).
[72] 饒振綱. 行星齒輪傳動設計. 化學工業出版社, 北京, 2014.
[73] PILOTEERS, 2012. 'Pilot VTM-4 AWD vs MDX SH-AWD.' Available at: http://www.piloteers.org/forums/67-performance/30386-pilot-vtm-4-awd-vs-mdx-sh-awd.html (Accessed in Oct. 8, 2015).
[74] J. M. Maguire. 'Low cost torque vectoring system.' Patent US20080207363 A1, USA, 2008.
[75] RitzSite, 2013. 'DAF cars.' Available at: http://www.ritzsite.demon.nl/DAF/DAF_cars_p3.htm (Accessed in Oct. 15, 2014).
[76] C.-C. Yu. 'Analysis of vehicle control modes.' Doctoral Thesis, National Taiwan University, Taiwan, 1998.
[77] E. Bakker, H. B. Pacejka, and L. Lidner. 'A new tire model with an application in vehicle dynamics studies.' SAE Technical Paper, 1989.
[78] J. Y. Wong. Theory of Ground Vehicles. John Wiley and Sons, New York, 2001.
[79] H. Lee and H. Kim. 'Shift speed improvement of a metal belt CVT.' KSME International Journal, vol. 15, no. 12, pp. 1623–1629, 2001.
[80] G. Carbone, L. Mangialardi, B. Bonsen, C. Tursi, and P. A. Veenhuizen. 'CVT dynamics: Theory and experiments.' Mechanism and Machine Theory, vol. 42, no. 4, pp. 409–428, 2007.
[81] N. Srivastava and I. Haque. 'A review on belt and chain continuously variable transmissions (CVT): Dynamics and control.' Mechanism and Machine Theory, vol. 44, no. 1, pp. 19–41, 2009.
[82] K.-H. Yu. 'Parameter design and numerical simulation of the power system of electric motorcycle.' Master Thesis, National Taiwan University, Taiwan, 1999.
[83] ACE, 2013. 'ACE rotary dampers.' Available at: http://ace-ace.com/downloads/en/extract_rota.pdf (Accessed in Oct. 12, 2015).
[84] VBOX MOTORSPORT, 2016. 'DriftBox.' Available at: http://www.vboxmotorsport.com/index.php/en/products/performance-meters/driftbox (Accessed in Mar. 24, 2016).
[85] VBOX MOTORSPORT, 2016. 'Micro input module.' Available at: https://www.vboxmotorsport.co.uk/store/index.php?route=product/category&path=71_72 (Accessed in Mar. 24, 2016).
[86] KEYENCE, 2016. 'FS-N11N.' Available at: http://www.keyence.com/products/sensor/fiber-optic/fs-n/models/fs-n11n/index.jsp (Accessed in Mar. 24, 2016).
[87] CleanMPG, 2013. 'Honda’s 2014 Accord hybrid drivetrain topology breakout.' Available at: http://www.cleanmpg.com/community/index.php?threads/48581/ (Accessed in Sep. 24, 2015).
[88] MOTORTREND, 2011. 'Comparison: 2011 Chevrolet Volt vs 2011 Nissan Leaf SL vs 2011 Toyota Prius III.' Available at: http://www.motortrend.com/roadtests/alternative/1108_2011_chevrolet_volt_vs_2011_nissan_leaf_vs_2011_toyota_prius_comparison/photo_00.html (Accessed in Sep. 24, 2015).
[89] Turst & Reliable Japan Car Exporter, 2014. 'Honda GP5 - intelligent dual clutch drive (i-DCD).' Available at: http://cars.kkleads.com/announcements/hondagp5-7speeddctwithinternalhigh-outputmotor (Accessed in Sep. 24, 2015).
[90] SUPER CAR WORLD, 2014. '2014 Honda Accord hybrid- intelligent multi-mode drive.' Available at: http://greencar.supercarsupercar.com/2014-honda-accord-hybrid/2014-honda-accord-hybrid-2014-honda-accord-hybrid-intelligent-multi-mode-drive/ (Accessed in Sep. 24, 2015).
[91] Connector + Cable Assembly Supplier, 2015. 'The impact of electric and hybrid vehicles on powertrain connectors.' Available at: http://www.connectorsupplier.com/the-impact-of-electric-and-hybrid-vehicles-on-powertrain-connectors/ (Accessed in Sep. 24, 2015).
[92] HYUNDAI, 2011. 'SONATA hybrid.' Available at: http://www.hyundainews.com/us/en/models/sonata-hybrid/2011. (Accessed in Sep. 24, 2015).
[93] MOTORTREND, 2012. '2012 Infiniti M35h vs. 2013 Lexus GS 450h vs. 2012 Porsche Panamera Hybrid.' Available at: http://www.motortrend.ca/en/car-reviews/alternative/1207-infiniti-m35h-vs-lexus-gs-450h-vs-porsche-panamera-hybrid/ (Accessed in Sep. 24, 2015).
[94] conceptcarz, 2010. '2010 Porsche 918 Spyder concept.' Available at: http://www.conceptcarz.com/view/photo/669510,18154/2010-Porsche-918-Spyder-Concept_photo.aspx (Accessed in Oct. 8, 2015).
[95] Green Car Congress, 2013. 'Volvo plug-in hybrid bus with Bůsbaar rapid charging to begin field testing in Gothenburg; 75-80% reduction in fuel consumption and CO2.' Available at: http://www.greencarcongress.com/2013/05/volvo-20130514.html. (Accessed in Oct. 8, 2015).
[96] mundoautomotor, 2012. 'Citroen DS5 Hybrid4, premiado en España.' Available at: http://www.mundoautomotor.com.ar/web/2012/05/29/citroen-ds5-hybrid4-premiado-en-espana/ (Accessed in Oct. 8, 2015).
[97] M. Fuchtner and D. Kraxner. 'Hybrid vehicle.' Patent US20100193269 A1, USA, 2010.
[98] autoblog, 2005. '2005 Ford Escape hybrid: In the Autoblog garage days 3-4.' Autoblog. Available at: http://www.autoblog.com/2005/07/30/2005-ford-escape-hybrid-in-the-autoblog-garage-days-3-4/ (Accessed in Oct. 8, 2015).
[99] F. Cimatti and R. Morawetz. 'Optionally connectable four-wheel drive vehicle.' Patent US8353379 B2, USA, 2013.
[100]ZF, 2014. 'ZF Friedrichshafen AG | 9-speed automatic transmission.' Available at: http://www.zf.com/corporate/en/products/innovations/9hp_automatic_transmission/9hp_automatic_transmission.html (Accessed in Nov. 25, 2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51085-
dc.description.abstract本研究探討扭力導引系統應用於車輛動態控制時之系統特性,並搜尋可能的系統構型作為未來系統發展之參考依據。隨著車輛安全性與操控性的要求日益提高,各種車輛動態控制的技術被廣泛的討論與應用。近年來扭力導引系統的開發日漸受到車輛產業的重視,該系統可藉由導引引擎扭力至特定車輪進行驅動力的分配,提升車輛的動態表現達到更安全更靈活的駕駛環境。為了使扭力導引系統的研究更為系統化且有效,本論文提出一套整合式的動力系統圖論方法並將其命名為「功能動力圖」(FPG)。該圖論方法可以圖形符號簡潔且明確的表示動力系統的架構,並可藉由該圖為基礎所發展之分析與設計方法對扭力導引系統進行一系列的開發流程。本研究首先應用功能動力圖分析方法探討現有扭力導引系統的機構組成、自由度、系統功能及系統動態方程式的推導,並應用功能動力圖設計方法進行系統合成討論可能的系統構型,建立系統圖集。接著針對雙無段變速系統(DCVT)進行動態模擬以評估其防滑差速以及扭力導引功能,並針對各式雙無段變速系統的行車特性進行了比較與討論。最後以實驗初步驗證其模擬結果的正確性。本論文主要貢獻包含兩部分:1)發展功能動力圖論方法並成功應用於混合動力系統、車輛傳動系統、自排變速箱系統及扭力導引系統之設計與分析;2)針對雙無段變速系統(DCVT)進行研究並了解其扭力導引特性。zh_TW
dc.description.abstractThe purpose of this study is to understand the characteristics of torque vectoring systems for vehicle dynamic control applications, and to make design syntheses of new system configurations for future system development. As the requirement of vehicle safety and drivability arises, varied vehicle dynamic control technologies have been widely discussed and applied. In recent years, torque vectoring system draws more attention in automotive industry since the system is able to transfer more driving torque to certain wheel to make a traction distribution so that better vehicle safety and agility can be achieved. In order to make the research of torque vectoring systems more systematic and efficient, an integrated graph-based powertrain design and analysis methodology known as 'Function Power Graph' (FPG) is proposed in this dissertation. The FPG is a symbolic graph which can present the configuration of a powertrain concisely and precisely. With the analysis and design techniques developed based on the FPG, the development process of torque vectoring systems can be performed. In this dissertation, the system configuration, degree of freedom, system function and the dynamic equation of the torque vectoring systems are investigated with the FPG analysis techniques. New possible system configurations are found with the FPG design techniques. Then, the limited-slip function and torque vectoring effect of the dual continuously variable transmission (DCVT) are evaluated with dynamic analysis. And the driving property of different DCVT systems are compared and discussed. At last, a practical experiment is performed and the correspondence to the simulation results is preliminarily approved. The main accomplishment of this research has two major parts: 1) The development of the FPG methodology which has been successfully applied to the design and analysis of hybrid systems, vehicle drivelines, automatic transmissions, and torque vectoring systems; 2) The investigation of the DCVT systems to understand the torque vectoring characteristics of the systems.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:24:56Z (GMT). No. of bitstreams: 1
ntu-105-D99522003-1.pdf: 5636356 bytes, checksum: 9ed8af54c25c2d77d8dd705d997ccebd (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 I
誌謝 III
摘要 V
Abstract VII
Contents IX
Figure Catalog XII
Table Catalog XVII
Symbols List XIX
Abbreviation XXI
1. Introduction 1
1.1 Background 1
1.2 Purpose and Objectives 5
1.3 Research Process 6
2. Function Power Graph Methodology 7
2.1 Composition and Rules 10
2.1.1 Elemental Units 10
2.1.2 Graph Establishment and Rule 14
2.2 Qualitative Analysis 16
2.2.1 Degree of freedom 16
2.2.2 Mode, Operation & Function 17
2.2.3 Mathematic Model Development 23
2.2.4 Simulation Tool 28
2.3 Conceptual Design 32
2.3.1 Original Design 32
2.3.2 System Synthesis 34
2.3.3 Automatic Enumeration and Evaluation Program 36
2.3.4 Genetic Algorithm Design Program 39
2.4 FPG Atlas 42
2.4.1 Hybrid Systems 42
2.4.2 Vehicle Drivelines 43
2.4.3 Automatic Transmissions 44
2.5 Summary 45
3. Analysis of Torque Vectoring Systems 46
3.1 Solid Axle 46
3.2 Open Differential 48
3.3 Limited-Slip Differential 50
3.4 Torque Vectoring Differential 53
3.4.1 Superposition Clutch TVD 53
3.4.2 Stationary Clutch TVD 56
3.4.3 Honda SH-AWD 60
3.4.4 GM TVD 62
3.5 Dual Continuously Variable Transmission 64
3.5.1 DAF Variomatic 64
3.5.2 US Patent 20110160944 A1 66
3.5.3 US Patent 20110237387 67
3.5.4 US Patent 20110238243 68
3.5.5 US Patent 8,649,950 B2 70
3.6 Summary 72
4. Synthesis of Torque Vectoring Systems 73
4.1 Atlas of LSD 73
4.2 Atlas of TVD 75
4.3 Atlas of CVT-OD 78
4.4 Atlas of DCVT 79
4.5 Atlas of DCVT-OD 81
4.6 Summary 83
5. Dynamic Analysis of the DCVT Systems 84
5.1 Modelling 85
5.1.1 Vehicle Dynamics 86
5.1.2 Active CVT Model 91
5.1.3 Passive CVT Model 92
5.2 Split-Mu Road Test 97
5.3 Constant-Turning Test 98
5.3.1 SA, OD and DCVT(NS) 99
5.3.2 DCVT(NS), DCVT(US) and DCVT(OS) 101
5.3.3 PDCVT, PDCVT-d100 and PDCVT-d1000 103
5.3.4 PDCVT-d100-c and PDCVT-d1000-c 105
5.3.5 DCVT-OD(US) and DCVT-OD(OS) 107
5.4 Constant Steering Angle at Various Vehicle Speeds 109
5.4.1 SA, OD, DCVT(NS), DCVT(US) and DCVT(OS) 109
5.4.2 PDCVT, PDCVT-d100, and PDCVT-d1000 111
5.4.3 DCVT-OD(US) and DCVT-OD(OS) 113
5.5 Constant Vehicle Speed at Various Steering Angles 115
5.5.1 SA, OD, DCVT(NS), DCVT(US) and DCVT(OS) 115
5.5.2 PDCVT, PDCVT-d100, and PDCVT-d1000 117
5.5.3 DCVT-OD(US) and DCVT-OD(OS) 119
5.6 Discussions and Summary 121
6. Experiment on the DCVT Systems 125
6.1 Vehicle and Equipments 125
6.2 Experiment Process 128
6.3 Experiment Results and Discussions 128
6.4 Summary 134
7. Conclusions 135
References 137
Appendix A: Case Study of Hybrid Systems 145
Appendix B: Atlas of Hybrid Systems 149
Appendix C: Atlas of Vehicle Drivelines 154
Appendix D: Atlas of Automatic Transmissions 155
About the Author 158
dc.language.isoen
dc.subject功能動力圖zh_TW
dc.subject動力系統zh_TW
dc.subject圖論zh_TW
dc.subject圖論zh_TW
dc.subject車輛動態學zh_TW
dc.subject扭力導引系統zh_TW
dc.subject雙無段變速系統zh_TW
dc.subject功能動力圖zh_TW
dc.subject雙無段變速系統zh_TW
dc.subject扭力導引系統zh_TW
dc.subject車輛動態學zh_TW
dc.subject動力系統zh_TW
dc.subjectdual continuously variable transmission (DCVT)en
dc.subjectGraph theoryen
dc.subjectpowertrainen
dc.subjectfunction power graph (FPG)en
dc.subjectvehicle dynamicsen
dc.subjecttorque vectoring systemen
dc.subjectdual continuously variable transmission (DCVT)en
dc.subjectGraph theoryen
dc.subjectpowertrainen
dc.subjectfunction power graph (FPG)en
dc.subjectvehicle dynamicsen
dc.subjecttorque vectoring systemen
dc.title應用功能動力圖論方法於車輛扭力導引系統之設計與分析zh_TW
dc.titleDesign and Analysis of Torque Vectoring Systems for Vehicle Applications Using Function Power Graph Methodologyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡高岳,廖有堅,陳柏全,尤正吉,蘇偉
dc.subject.keyword圖論,動力系統,功能動力圖,車輛動態學,扭力導引系統,雙無段變速系統,zh_TW
dc.subject.keywordGraph theory,powertrain,function power graph (FPG),vehicle dynamics,torque vectoring system,dual continuously variable transmission (DCVT),en
dc.relation.page159
dc.identifier.doi10.6342/NTU201600297
dc.rights.note有償授權
dc.date.accepted2016-06-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
5.5 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved