Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51067Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃建璋(JianJang Huang) | |
| dc.contributor.author | Yen-Hsiang Hsu | en |
| dc.contributor.author | 許晏翔 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:24:40Z | - |
| dc.date.available | 2016-07-25 | |
| dc.date.copyright | 2016-07-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-06-14 | |
| dc.identifier.citation | [1] B. Little, S. Chu, P. Absil, J. Hryniewicz, F. Johnson, F. Seiferth, et al., 'Very high-order microring resonator filters for WDM applications,' Photonics Technology Letters, IEEE, vol. 16, pp. 2263-2265, 2004.
[2] H. D. Kim, S.-G. Kang, and C.-H. Le, 'A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,' Photonics Technology Letters, IEEE, vol. 12, pp. 1067-1069, 2000. [3] G. Calo, A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, 'Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,' Quantum Electronics, IEEE Journal of, vol. 47, pp. 172-181, 2011. [4] G. Calò, A. D'Orazio, and V. Petruzzelli, 'Broadband Mach–Zehnder switch for photonic networks on chip,' Journal of Lightwave Technology, vol. 30, pp. 944-952, 2012. [5] S. Park, K.-J. Kim, I.-G. Kim, and G. Kim, 'Si micro-ring MUX/DeMUX WDM filters,' Optics express, vol. 19, pp. 13531-13539, 2011. [6] A. D'Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, 'Photonic band gap filter for wavelength division multiplexer,' Optics express, vol. 11, pp. 230-239, 2003. [7] E. Sari and H. V. Demir, 'InGaN/GaN-based quantum modulators break record for blue electroabsorption.' [8] F. Renner, P. Kiesel, G. Döhler, M. Kneissl, C. Van de Walle, and N. Johnson, 'Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy,' Applied physics letters, vol. 81, pp. 490-492, 2002. [9] W. Jiang, L. Gu, X. Chen, and R. T. Chen, 'Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,' Solid-State Electronics, vol. 51, pp. 1278-1286, 2007. [10] C. Rivera, J. Cabrero, P. Munuera, and F. Aragon, 'GaN-based technology for MQW modulating retro-reflectors operating in the visible and ultraviolet spectral ranges,' in Space Optical Systems and Applications (ICSOS), 2011 International Conference on, 2011, pp. 239-244. [11] G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, 'Photonic band gap active waveguide filters based on dilute nitrides,' physica status solidi (c), vol. 10, pp. 567-572, 2013. [12] G. Calò, L. Mescia, V. Petruzzelli, and F. Prudenzano, 'Study of gain in photonic bandgap active InP waveguides,' JOSA B, vol. 26, pp. 2414-2422, 2009. [13] S. Shimizu, X. Gu, T. Shimada, A. Matsutani, and F. Koyama, 'Modeling and experiment on low voltage slow-light electro-absorption modulators for high-speed and low power consumption optical interconnect,' in CPMT Symposium Japan, 2012 2nd IEEE, 2012, pp. 1-4. [14] Y. Tang, J. D. Peters, and J. E. Bowers, 'Energy-efficient hybrid silicon electroabsorption modulator for 40-Gb/s 1-V uncooled operation,' Photonics Technology Letters, IEEE, vol. 24, pp. 1689-1692, 2012. [15] A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, 'Photonic crystal drop filter exploiting resonant cavity configuration,' Nanotechnology, IEEE Transactions on, vol. 7, pp. 10-13, 2008. [16] T. Tanabe, E. Kuramochi, H. Taniyama, and M. Notomi, 'Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a pin integrated photonic crystal nanocavity,' Optics letters, vol. 35, pp. 3895-3897, 2010. [17] A. Z. Rashed, 'Novel Design and Modeling of High Performance Broadband integrated GaAs Electro-Optic Absorption Modulators in Advanced High Speed Switching Optical Communication Systems,' International Journal of Advanced Electrical Engineering Research (IJAEER), vol. 1, 2013. [18] R. G. Walker, 'High-speed III-V semiconductor intensity modulators,' Quantum Electronics, IEEE Journal of, vol. 27, pp. 654-667, 1991. [19] P. Holmström, 'Electroabsorption modulator using intersubband transitions in GaN-AlGaN-AlN step quantum wells,' Quantum Electronics, IEEE Journal of, vol. 42, pp. 810-819, 2006. [20] C.-K. Kao, A. Bhattacharyya, C. Thomidis, R. Paiella, and T. D. Moustakas, 'Electroabsorption modulators based on bulk GaN films and GaN/AlGaN multiple quantum wells,' Journal of Applied Physics, vol. 109, p. 083102, 2011. [21] A. Lupu, M. Tchernycheva, S. Sakr, Y. Kotsar, N. Isac, E. Monroy, et al., 'Electroabsorption and refractive index modulation induced by intersubband transitions in GaN/AlN heterostructure waveguides,' in SPIE OPTO, 2013, pp. 86251X-86251X-7. [22] C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, 'Piezoelectric Franz–Keldysh effect in strained GaInN/GaN heterostructures,' Journal of applied physics, vol. 85, pp. 3786-3791, 1999. [23] H. Shen, M. Wraback, H. Zhong, A. Tyagi, S. DenBaars, S. Nakamura, et al., 'Determination of polarization field in a semipolar (112‾ 2) InGa/GaN single quantum well using Franz-Keldysh oscillations in electroreflectance,' Applied Physics Letters, vol. 94, p. 1906, 2009. [24] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, et al., 'Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,' Japanese Journal of Applied Physics, vol. 36, p. L382, 1997. [25] E. Sari, S. Nizamoglu, T. Ozel, and H. V. Demir, 'Blue quantum electroabsorption modulators based on reversed quantum confined Stark effect with blueshift,' Applied physics letters, vol. 90, pp. 11101-11101, 2007. [26] Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. Kamins, et al., 'Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators,' Selected Topics in Quantum Electronics, IEEE Journal of, vol. 12, pp. 1503-1513, 2006. [27] A. Lupu, M. Tchernycheva, Y. Kotsar, E. Monroy, and F. Julien, 'Electroabsorption and refractive index modulation induced by intersubband transitions in GaN/AlN multiple quantum wells,' Optics express, vol. 20, pp. 12541-12549, 2012. [28] A. Drabinska, J. M. Baranowski, K. Pakula, P. Caban, and W. Strupinski, 'Electroreflectance spectroscopy on III‐N quantum wells,' physica status solidi (a), vol. 206, pp. 816-820, 2009. [29] O. Ambacher, 'Growth and applications of group III-nitrides,' Journal of Physics D: Applied Physics, vol. 31, p. 2653, 1998. [30] C. k. Kao, A. Bhattacharyya, C. Thomidis, A. Moldawer, R. Paiella, and T. Moustakas, 'A comparative study of UV electro‐absorption modulators based on bulk III‐nitride films and multiple quantum wells,' physica status solidi (c), vol. 9, pp. 770-773, 2012. [31] E. Sari, S. Nizamoglu, T. Ozel, and H. V. Demir, 'Blue InGaN/GaN-based Quantum Electroabsorption Modulators,' in Optoelectronic and Microelectronic Materials and Devices, 2006 Conference on, 2006, pp. 18-20. [32] M. K. Chin and W. S. Chang, 'Theoretical design optimization of multiple-quantum-well electroabsorption waveguide modulators,' Quantum Electronics, IEEE Journal of, vol. 29, pp. 2476-2488, 1993. [33] R. M. Audet, E. H. Edwards, K. C. Balram, S. Claussen, R. K. Schaevitz, E. Tasyurek, et al., 'Surface-Normal Ge/SiGe Asymmetric Fabry–Perot Optical Modulators Fabricated on Silicon Substrates,' Lightwave Technology, Journal of, vol. 31, pp. 3995-4003, 2013. [34] U. Keller, D. Miller, G. Boyd, T. Chiu, J. Ferguson, and M. Asom, 'Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,' Optics letters, vol. 17, pp. 505-507, 1992. [35] I. Friel, C. Thomidis, and T. Moustakas, 'Ultraviolet electroabsorption modulator based on AlGaN/GaN multiple quantum wells,' Journal of applied physics, vol. 97, pp. 123515-123515, 2005. [36] S. Z. Zhang, Y.-J. Chiu, P. Abraham, and J. E. Bowers, '25 GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,' IEEE Photonics Technology Letters, vol. 11, pp. 191-193, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51067 | - |
| dc.description.abstract | 近年來,光子晶體在光通訊中占有重要地位,因為其針對在光通訊網路中之訊號路由、訊號開關、訊號濾波…等等課題提供有效的解決方案。再者,因為光子晶體具有控制光流以及對特定波長群速度的抑制能力,故其可提升元件表現,使得在主動元件中使用光子晶體特別具有吸引力。這些行為使得光訊號和主動材料之間的互動更加有效率。藉由將光子晶體與現有元件整合,可以達到更加有效的波長選擇。
在本篇論文中,我們藉由模擬軟體的輔助設計元件。為符合可見光通訊的應用與整合,我們將此元件的中心工作波長設定為450 nm,其與現有的LED晶圓之發光頻譜相符。接著,為驗證模擬結果,我們仔細地選擇元件的晶格常數、缺陷長度、以及缺陷寬度。根據初始元件的量測結果,我們進一步減少元件的可變參數並以此設計可施加電場於其上之具有電極的主動元件。為達成更佳的波長選擇效果,我們將-5V的逆向偏壓於元件上。 在接下來的第二部分實驗中,我們改變不同的入射光源以觀察較長所展現的波長選擇。更進一步,藉由施加順向偏壓於元件上,我們嘗試增加信道(channel)高峰(局部極大)的強度並且抑制相鄰低谷(局部極小)的強度,以獲得更佳的元件表現。除了藍光LED光源以外,我們嘗試了綠光、以及紅光LED,並得到藍光LED具有最佳電致吸收表現之結論。 | zh_TW |
| dc.description.abstract | In recent years, photonic crystals (PhCs) play a key role in optical communication since they offer an efficient solution to the problems of signal routing, switching, filtering, etc. within optical networks. Moreover, the use of PhCs in active components is particularly attractive because it enhances the device performance owing to the capability of manipulating the flow of light and to the possibility of reducing the group velocity at certain wavelengths. This behavior allows a more efficient interaction between the optical signal and the active material. By integrating PhC with current devices, more effective wavelength selection can be realized.
In this work, we designed our device with the aid of simulation software. For application and integration in visible light communication, we set the central operating wavelength of the device to be 450 nm, corresponding to the emission spectrum of the LED wafer we have. Then, we carefully chose the lattice constant, defect length and defect width of the device in order to confirm the simulation results. According to the measurement results of the primitive devices, we reduced the device parameters and redesigned the active devices with electrodes to apply electric fields on them. For the purpose of realizing better wavelength selection, we applied reversed bias up to -5V on the devices. Next, in the second part of this article, we change different incident light sources to observe wavelength selection in longer wavelengths. Moreover, we attempt to increase the maximum intensity at the peak of channels and reduce the adjacent minimums by applying forward bias on the devices in order to acquire better performance. Besides blue LED light source, we tried green and red LEDs, and come to the conclusion that blue LED has the best electro-absorption performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:24:40Z (GMT). No. of bitstreams: 1 ntu-104-R01941117-1.pdf: 30040492 bytes, checksum: 0b0723d0bb8e55cbefabb65d14b12e76 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 I
Acknowledgement II 摘要 III Abstract IV Contents VI List of Figures VIII Chapter 1 Introduction 1 1.1 Introduction to photonic band gap waveguide filter 1 1.2 Literature review of photonic band gap waveguide filters 3 1.2.1 Wavelength filtering characteristics of defective PBG 3 1.2.2 Effects of band tilt 4 1.3 The method of measurement 10 1.4 Research motivation 11 Chapter 2 Fabrication of Photonic Band Gap Waveguide Filters 13 2.1 InGaN/GaN multiple quantum well LED wafer 13 2.2 Designing photonic crystal patterns 14 2.2.1 Two-dimensional photonic crystals 14 2.2.2 Designing photonic crystal patterns 15 2.3 Fabrication process of photonic band gap waveguide filter 19 2.4 Fabrication process of photonic band gap waveguide filter with electrodes 21 Chapter 3 Measurement 24 3.1 Preface 24 3.2 Details of measurement 25 3.3 Results and discussions 27 3.3.1 Results of photonic band gap waveguide filter 27 3.3.1.1 Results of different defect lengths (L) 27 3.3.1.2 Results of different defect widths (W) 31 3.3.1.3 Results of different lattice constant (a) 34 3.3.2 Results of photonic band gap waveguide filter with electrodes 40 3.4 Conclusion 47 Chapter 4 Related Works 49 4.1 Preface 49 4.2 Measurement with positive bias 49 4.3 Measurement with different light sources 53 4.3.1 Green LED as light source 53 4.3.2 Red LED as light source 60 4.4 Effects of different polarization 68 4.5 Conclusion 74 Chapter 5 Conclusion 75 Reference 78 | |
| dc.language.iso | en | |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 電致吸收 | zh_TW |
| dc.subject | 波長選擇 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 波長選擇 | zh_TW |
| dc.subject | 電致吸收 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | wavelength selection | en |
| dc.subject | photonic crystal | en |
| dc.subject | wavelength selection | en |
| dc.subject | electro-absorption | en |
| dc.subject | light-emitting diode | en |
| dc.subject | photonic crystal | en |
| dc.subject | electro-absorption | en |
| dc.subject | light-emitting diode | en |
| dc.title | 以光子晶體製作之發光二極體吸光調變器應用 | zh_TW |
| dc.title | Applications of LED Electro-absorption Modulators with the Photonic Crystal Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鼎偉(Ding-Wei Huang),吳肇欣(Chao-Hsin Wu) | |
| dc.subject.keyword | 光子晶體,波長選擇,電致吸收,發光二極體, | zh_TW |
| dc.subject.keyword | photonic crystal,wavelength selection,electro-absorption,light-emitting diode, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU201600343 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-06-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 29.34 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
