請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51066完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(JianJang Huang) | |
| dc.contributor.author | Yi-Wen Wang | en |
| dc.contributor.author | 王怡文 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:24:39Z | - |
| dc.date.available | 2016-07-25 | |
| dc.date.copyright | 2016-07-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-06-14 | |
| dc.identifier.citation | [1] H. R. Arwin and K. I. Lundstrom, 'Method for studying enzymatic and other biochemical reactions,' 1978.
[2] F. N. Ishikawa, H.-K. Chang, M. Curreli, H.-I. Liao, C. A. Olson, P.-C. Chen, et al., 'Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes,' ACS nano, vol. 3, pp. 1219-1224, 2009. [3] F. Yan, S. M. Mok, J. Yu, H. L. Chan, and M. Yang, 'Label-free DNA sensor based on organic thin film transistors,' Biosensors and Bioelectronics, vol. 24, pp. 1241-1245, 2009. [4] E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, et al., 'Label-free biomarker detection from whole blood,' Nature nanotechnology, vol. 5, pp. 138-142, 2010. [5] H. Ben-Yoav, A. Biran, R. Pedahzur, S. Belkin, S. Buchinger, G. Reifferscheid, et al., 'A whole cell electrochemical biosensor for water genotoxicity bio-detection,' Electrochimica Acta, vol. 54, pp. 6113-6118, 2009. [6] B. T. Kurien and R. H. Scofield, 'Western blotting,' Methods, vol. 38, pp. 283-293, 2006. [7] C. V. Sapan, R. L. Lundblad, and N. C. Price, 'Colorimetric protein assay techniques,' Biotechnology and applied Biochemistry, vol. 29, pp. 99-108, 1999. [8] P. Pattnaik, 'Surface plasmon resonance,' Applied biochemistry and biotechnology, vol. 126, pp. 79-92, 2005. [9] E. A. Garber, 'Detection of melamine using commercial enzyme-linked immunosorbent assay technology,' Journal of Food Protection®, vol. 71, pp. 590-594, 2008. [10] P. I. Reyes, C.-J. Ku, Z. Duan, Y. Lu, A. Solanki, and K.-B. Lee, 'ZnO thin film transistor immunosensor with high sensitivity and selectivity,' Applied Physics Letters, vol. 98, pp. 173702-173702-3, 2011. [11] K. Choi, J.-Y. Kim, J.-H. Ahn, J.-M. Choi, M. Im, and Y.-K. Choi, 'Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application,' Lab Chip, vol. 12, pp. 1533-1539, 2012. [12] Y. Ohno, K. Maehashi, and K. Matsumoto, 'Label-free biosensors based on aptamer-modified graphene field-effect transistors,' Journal of the American Chemical Society, vol. 132, pp. 18012-18013, 2010. [13] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, 'Electrical detection of single viruses,' Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14017-14022, 2004. [14] B. L. Allen, P. D. Kichambare, and A. Star, 'Carbon nanotube field‐effect‐transistor‐based biosensors,' Advanced Materials, vol. 19, pp. 1439-1451, 2007. [15] M. Yuqing, C. Jianrong, and F. Keming, 'New technology for the detection of pH,' Journal of biochemical and biophysical methods, vol. 63, pp. 1-9, 2005. [16] S. Hideshima, R. Sato, S. Inoue, S. Kuroiwa, and T. Osaka, 'Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking,' Sensors and Actuators B: Chemical, vol. 161, pp. 146-150, 2012. [17] T. Sakata, S. Matsumoto, Y. Nakajima, and Y. Miyahara, 'Potential behavior of biochemically modified gold electrode for extended-gate field-effect transistor,' Japanese Journal of Applied Physics, vol. 44, p. 2860, 2005. [18] I.-K. Lee, K. H. Lee, S. Lee, and W.-J. Cho, 'Microwave Annealing Effect for Highly Reliable Biosensor: Dual-Gate Ion-Sensitive Field-Effect Transistor Using Amorphous InGaZnO Thin-Film Transistor,' ACS applied materials & interfaces, vol. 6, pp. 22680-22686, 2014. [19] D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, 'An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,' Sensors and Actuators B: Chemical, vol. 117, pp. 488-494, 2006. [20] Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, 'Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,' Lab on a Chip, vol. 4, pp. 292-298, 2004. [21] K.-i. Miyamoto, H. Ichimura, T. Wagner, M. J. Schöning, and T. Yoshinobu, 'Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel,' Sensors and Actuators B: Chemical, vol. 189, pp. 240-245, 2013. [22] D. Erickson and D. Li, 'Integrated microfluidic devices,' Analytica Chimica Acta, vol. 507, pp. 11-26, 2004. [23] K. Choi, J.-Y. Kim, J.-H. Ahn, J.-M. Choi, M. Im, and Y.-K. Choi, 'Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application,' Lab on a Chip, vol. 12, pp. 1533-1539, 2012. [24] Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, et al., 'Silicon nanowire arrays for label-free detection of DNA,' Analytical Chemistry, vol. 79, pp. 3291-3297, 2007. [25] M. J. De Boer, W. R. Tjerkstra, J. Berenschot, H. V. Jansen, G. Burger, J. Gardeniers, et al., 'Micromachining of buried micro channels in silicon,' Microelectromechanical Systems, Journal of, vol. 9, pp. 94-103, 2000. [26] F. Blanco, M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, A. Calle, et al., 'Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing,' Journal of Micromechanics and Microengineering, vol. 16, p. 1006, 2006. [27] M. O. MÅNSSON, P. O. LARSSON, and K. MOSBACH, 'Covalent Binding of an NAD Analogue to Liver Alcohol Dehydrogenase Resulting in an Enzyme‐Coenzyme Complex not Requiring Exogenous Coenzyme for Activity,' European Journal of Biochemistry, vol. 86, pp. 455-463, 1978. [28] C. Thorne and N. O. Kaplan, 'Physicochemical properties of pig and horse heart mitochondrial malate dehydrogenase,' Journal of Biological Chemistry, vol. 238, pp. 1861-1868, 1963. [29] J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, 'Fluorescence lifetime imaging of free and protein-bound NADH,' Proceedings of the National Academy of Sciences, vol. 89, pp. 1271-1275, 1992. [30] O. Wieland and H. Bergmeyer, 'Methods of enzymatic analysis,' vol. 1, 2nd ed., pp. 485-486, 1965. [31] M. W. King, The medical biochemistry page: Terre Haute Center for Medical Education, 1996. [32] E. J. Wood, 'Data for biochemical research (third edition) by R M C Dawson, D C Elliott, W H Elliott and K M Jones, pp 580. Oxford Science Publications, OUP, Oxford, 1986. ISBN 0-19-855358-7,' Biochemical Education, vol. 15, p. 122, 1987. [33] J. V. Passonneau and O. H. Lowry, 'Enzymatic analysis: a practical guide,' pp. 9-10, 1993. [34] J. Jung, S. J. Kim, K. W. Lee, D. H. Yoon, Y.-g. Kim, H. Y. Kwak, et al., 'Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors,' Biosensors and Bioelectronics, vol. 55, pp. 99-105, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51066 | - |
| dc.description.abstract | 本論文包含兩個部分:第一部分利用薄膜電晶體為底的生物感測器量測蛋白質與配體的反應行為,再來則是討論生物化學反應和反應速率常數。
蛋白質與配體的交互作用一直是各大藥廠非常有興趣的議題。我們的生物感測器結合金感應板、以及微流道系統,以量測生物分子的電特性及流體的訊息。待測生物分子藉由濃度梯度而流動,當此待測物經由微流道流至金感應板,電晶體的電流會因此升高。 我們首先分別量測蛋白質及配體的訊號,最後將配體引入蛋白質並觀察其反應行為。 第二部分所討論的生物化學反應是在人體代謝途徑中重要的一環。首先將生物感測器的金感應板加上用來連結的分子,以增加待測物被感應到的機會。藉由量測不同濃度組成的溶液,可得到電流變化及濃度的關係。我們的生物感測器可分辨完全反應及不完全反應兩種情況,同時也能觀察反應速率常數與電流變化的關係。 | zh_TW |
| dc.description.abstract | Protein-ligand interaction and bio-chemical reaction are detected by a-IGZO thin-film transistor-based (TFT-based) biosensor with an extended sensing pad in this thesis. These two issues are discussed separately in two parts.
The first part is about the interaction between protein and ligand, i.e. MDH and NADH. The TFT-based biosensor is integrated with a microfluidic channel. Due to concentration gradient in the solution, the bio-molecules diffuse to the sensing pad and then cause a drain current change. The diffusion and electrical signals of NADH and MDH are measured separately. Then the interaction between NADH and MDH is detected by our TFT biosensor. In the second part, a bio-chemical reaction in metabolic pathway is detected. This reaction is one step in malate-aspartate shuttle, which is an important bio-chemical system for electron translocation. Solutions with different concentration are tested. By sensing the induced charge on extended pad, the relation between current change and complete/incomplete reactions, or reaction rate constant, k, is revealed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:24:39Z (GMT). No. of bitstreams: 1 ntu-105-R02941018-1.pdf: 2291013 bytes, checksum: f49b8b940cbf024a128a2ef86406bd5c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 I
Abstract II 摘要 III Table of Contents IV List of Figures VI Pages Chapter 1 Introduction 1 1.1 Background of Biosensors 1 1.1.1 Overview of Bio-molecule Detection 1 1.1.2 Overview of FET-based Biosensors 3 1.2 Thesis Outline 7 Chapter 2 TFT-based Biosensor and Protein-ligand Interaction 8 2.1 Introduction 8 2.1.1 Introduction of Microfluidic System 8 2.1.2 Introduction of NADH and MDH 10 2.2 Device Fabrication and Measurement 11 2.2.1 Fabrication Process of TFT-based Biosensors 11 2.2.2 Measurement 13 2.3 Results and Discussion 14 2.4 Summary 20 Chapter 3 TFT-based Biosensor and Bio-chemical Reaction 21 3.1 Introduction 21 3.1.1 Introduction of the Chemical Reaction in Malate-aspartate Shuttle 21 3.2 Device Fabrication and Experiment Flow 23 3.2.1 Structure of Bio-sensing Devices 23 3.2.2 Device Fabrication 24 3.2.3 Measurement 26 3.3 Results and Discussion 29 3.4 Summary 41 Chapter 4 Conclusion 42 4.1 Detection of Protein-ligand Interaction by the TFT-based Biosensor Integrated with Microfluidic Channel 42 4.2 Detection of Bio-chemical Reaction by TFT-based Biosensors 43 Reference 44 | |
| dc.language.iso | en | |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 非晶相銦鎵鋅氧化物 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | 蛋白質配體反應行為 | zh_TW |
| dc.subject | 生物化學反應 | zh_TW |
| dc.subject | 非晶相銦鎵鋅氧化物 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 蛋白質配體反應行為 | zh_TW |
| dc.subject | 生物化學反應 | zh_TW |
| dc.subject | TFT | en |
| dc.subject | bio-chemical reaction | en |
| dc.subject | biosensor | en |
| dc.subject | a-IGZO | en |
| dc.subject | bio-chemical reaction | en |
| dc.subject | protein-ligand | en |
| dc.subject | microfluidic channel | en |
| dc.subject | a-IGZO | en |
| dc.subject | TFT | en |
| dc.subject | biosensor | en |
| dc.subject | microfluidic channel | en |
| dc.subject | protein-ligand | en |
| dc.title | 銦鎵鋅氧化物薄膜電晶體於蛋白質與配體接合反應偵測之應用 | zh_TW |
| dc.title | Detection of Protein-Ligand Interactions by IGZO Thin Film Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,楊宗霖,吳育任 | |
| dc.subject.keyword | 非晶相銦鎵鋅氧化物,薄膜電晶體,生物感測器,微流道,蛋白質配體反應行為,生物化學反應, | zh_TW |
| dc.subject.keyword | a-IGZO,TFT,biosensor,microfluidic channel,protein-ligand,bio-chemical reaction, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU201600346 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-06-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
