Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51063
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩
dc.contributor.authorTing-Li Wuen
dc.contributor.author吳亭利zh_TW
dc.date.accessioned2021-06-15T13:24:36Z-
dc.date.available2018-07-06
dc.date.copyright2016-07-06
dc.date.issued2016
dc.date.submitted2016-06-14
dc.identifier.citation行政院農委會農糧署. 2015. 2015年3月主要切花生產預測. 台灣花卉園藝 133, 8-9.
Agrawal, G.K., Jwa, N.S., Rakwal, R. 2000. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem. Biophys. Res. Commun. 274, 157-65.
An, C., Mou, Z. 2011. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53, 412-28.
Appel, H.M., Cocroft, R.B. 2014. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175, 1257-66.
Asselbergh, B., De Vleesschauwer, D., Hofte, M. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant-Microbe Interact. 21, 709-19.
Balmer, D., Planchamp, C., Mauch-Mani, B. 2013. On the move: induced resistance in monocots. J. Exp. Bot. 64, 1249-61.
Barriuso, J., Solano, B.R., Gutierrez Manero, F.J. 2008. Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98, 666-72.
Bostock, R.M. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545-80.
Bostock, R.M., Pye, M.F., Roubtsova, T.V. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu. Rev. Phytopathol. 52, 517-49.
Brooks, A.V. 1980. Lily diseases and disorders. New York: Universe Books.
Chang, S.Y. 2015. The mechanism study of Bacillus cereus-induced systemic resistance against southern corn leaf blight. Taipei, Taiwan: National Taiwan University, Master thesis.
Chastagner, G.A., Riley, K. 1990. Occurrence and control of benzimidazole and dicarboximide resistant Botrytis spp. on bulb crops in Western Washington and Oregon. Acta Hort. 266, 437-45.
Chen, Y.T. 2014. Application of calcium on the control of lily gray mold and the mechanism study. Taipei, Taiwan: National Taiwan University, Master thesis.
Conrath, U., Beckers, G.J., Flors, V., et al. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19, 1062-71.
Conrath, U. 2009. Priming of Induced Plant Defense Responses. Adv. Bot. Res. 51, 361-95.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross,J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., Kazana, K. 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225-45.
Doss, R.P., Christian, J.K., Chastagner, G.A. 1988. Infection of Easter lily leaves from conidia of Botrytis elliptica. Can. J. Bot. 66, 1204-8.
Drogue, B., Sanguin, H., Chamam, A., Mozar, M., Llauro, C., Panaud, O., Prigent-Combaret, C., Picault, N., Wisniewski-Dyé, F. 2014. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation. Front. Plant Sci. 5, 1-14.
Du, F., Wu, Y., Zhang, L., Li, X. W., Zhao, X. Y., Wang, W. H., Gao, Z. S., Xia, Y. P. 2014. De novo assembled transcriptome analysis and SSR marker development of a mixture of six tissues from Lilium Oriental hybrid ‘Sorbonne’. Plant Mol. Biol. Rep. 33, 281-93.
Durrant, W.E., Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185-209.
Edwards, R., Dixon, D.P. 2005. Plant glutathione transferases. Methods Enzymol. 401, 169-86.
Kurth, F., Mailänder, S., Bönn, M., Feldhahn, L., Herrmann, S., Große, I., Buscot, F., Schrey, S.D., Tarkka, M.T. 2014. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Mol. Plant-Microbe. Interact. 27, 891-900.
Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., Abdala, G. 2007. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76, 1145-52.
Geiger, D., Scherzer, S., Mumm, P., Martena, I., Achea, P., Matschib, S., Lieseb, A., Wellmannc, C., Al-Rasheidd, K.A.S., Grillc, E., Romeisb, T., Hedricha, R. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl. Acad. Sci. USA 107, 8023-8.
Gomez-Gomez, L. 2004. Plant perception systems for pathogen recognition and defence. Mol. Immunol. 41, 1055-62.
Grassotti, A., Gimelli, F. 2010. Bulb and cut flower production in the genus Lilium: Current status and the future. Proceedings of the II International Symposium on the Genus Lilium 900, 21-35.
Guo, H., Ecker, J.R. 2004. The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7, 40-9.
Guo, J., Pang, Q., Wang, L., Yu, P., Li, N., Yan, X. 2012. Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Sci. 10, 57.
Henry, G., Thonart, P., Ongena, M. 2012. PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnol. Agron. Soc. Environ. 16, 257-68.
Hermosa, R., Rubio, M.B., Cardoza, R.E., Nicolas, C., Monte, E., Gutierrez, S. 2013. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int. Microbiol. 16, 69-80.
Hou, P. F., Chen, C. Y. 2003. Early stages of infection of lily leaves by Botrytis elliptica and B. cinerea. Plant Pathol. Bull. 12, 103-8.
Hsieh, T., Huang, J. 1998. Factors affecting disease development of Botrytis leaf blight of lily caused by Botrytis elliptica. Plant Prot. Bull. 40, 227-40.
Hsieh, T., Tu, C. 1993. The occurrence of lily leaf blight caused by Botrytis elliptica (Berk.) Cooke in Taiwan. Plant Protect. Bull. 35, 355 (Abstr).
Hsieh, T. F., Huang, J. W. 1999. Effect of film-forming polymers on control of lily leaf blight caused by Botrytis elliptica. Eur. J. Plant Pathol. 105, 501-8.
Hsieh, T. F., Huang, J. W., Hsiang, T. 2001. Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. Eur. J. Plant Pathol. 107, 571-81.
Hua, J., Meyerowitz, E. M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94, 261-71.
Huang, C. J., Liu, Y. H., Yang, K. H., Chen, C. Y. 2012. Physiological response of Bacillus cereus C1L-induced systemic resistance in lily against Botrytis leaf blight. Eur. J. Plant Pathol. 134, 1-12.
Hurd, P.J., Nelson, C.J. 2009. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genomic Proteomic 8, 174-83.
Katagiri, F., Tsuda, K. 2010. Understanding the plant immune system. Mol. Plant- Microbe Interact. 23, 1531-6.
Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., Ecker, J. R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72, 427-41.
Kim, S. Y., Nam, K. H. 2010. Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep. 29, 203-9.
Koornneef, A., Pieterse, C. M. 2008. Cross talk in defense signaling. Plant Physiol. 146, 839-44.
Korolev, N., David, D. R., Elad, Y. 2008. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53, 667-83.
Korpelainen, E., Tuimala, J., Somervuo, P., Huss, M., Wong, G. 2015. RNA-seq Data Analysis: A Practical Approach. Boca Raton, London, New York: CRC Press. 27-130.
Kumar, A. S., Lakshmanan, V., Caplan, J. L., Powell, D., Czymmek, K. J., Levia, D. F., Bais, H. P. 2012. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 72, 694-706.
Lakshmanan, V., Bais, H. P. 2013. Factors other than root secreted malic acid that contributes toward Bacillus subtilis FB17 colonization on Arabidopsis roots. Plant Signal. Behav. 8, 657-68.
Lee, M. L. 2006. Baseline sensitivity of Botrytis elliptica to fludioxonil in Taiwan. Plant Prot. Bull. 48, 163-71.
Lee, S. C., Luan, S. 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 35, 53-60.
Lien, Y. T. 2011. Development and application of Bacillus cereus C1L endospore-base bioagents. Taipei, Taiwan: National Taiwan University, Master thesis.
Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., Chang, T. H., Lin, S. S. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol. 55, 942-57.
Liu, Y. H. 2008. Studies on Bacillus cereus C1L-induced systemic resistance against Botrytis elliptica in Lilium. Taipei, Taiwan: National Taiwan University, Ph. D. Dissertation.
Liu, Y. H., Huang, C. J., Chen, C. Y. 2008. Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98, 830-6.
Lu, Y. Y., Chen, C. Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Sci. 169, 1-9.
Lu, Y. Y., Liu, Y. H., Chen, C. Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP1-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Sci. 172, 913-9.
Lyons, R., Manners, J. M., Kazan, K. 2013. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep. 32, 815-27.
Maclean, N. A. 1951. Botrytis on lilies. Phytopathology 41, 941.
Mathys, J., De Cremer, K., Timmermans, P., Van Kerckhove, S., Lievens, B., Vanhaecke, M., Cammue, B. P., De Coninck, B. 2012. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front. Plant Sci. 3, 108.
Mayer, A. M., Staples, R. C., Gil-Ad, N. L. 2001. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58, 33-41.
Migheli, Q., Aloi, C., Gullino, M. 1990. Resistance of Botrytis elliptica to fungicides. Acta Hort. 266, 429-36.
Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L., Guo, J. H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol. Plant-Microbe Interact 24, 533-42.
Obermeyer, G., Fragner, L., Lang, V., Weckwerth, W. 2013. Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol. 162, 1822-33.
Okada, T., Singh, M. B., Bhalla, P. L. 2007. Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray. Plant Cell Rep. 26, 1045-52.
Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L. S. 2013. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64, 445-58.
P, V. a. N. B., Staats, M., Ja, V. a. N. K. 2004. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol. Plant Pathol. 5, 559-74.
Pieterse, C. M., Van Pelt, J. A., Verhagen, B. W., Ton, J., Van Wees, A., Léon-Kloosterziel, K. M., Van Loon, L. 2003. Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35, 39-54.
Porcel, R., Zamarreno, A. M., Garcia-Mina, J. M., Aroca, R. 2014. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol. 14, 36.
Quecini, V., Torres, G. A., Rosa Jr, V. E. D., Gimenes, M. A., Machado, J. B. D. M., Figueira, A. V. D. O., Benedito, V., Targon, M. L. P., Cristofani-Yaly, M. 2007. In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome. Genet. Mol. Biol. 30, 713-33.
Raghavendra, A. S., Gonugunta, V. K., Christmann, A., Grill, E. 2010. ABA perception and signalling. Trends Plant Sci. 15, 395-401.
Ryu, H. Y., Kim, S. Y., Park, H. M., You, J. Y., Kim, B. H., Lee, J. S., Nam, K. H. 2009. Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death. Biochem. Biophys. Res. Commun. 379, 417-22.
Schuster, S. C. 2007. Next-generation sequencing transforms today’s biology. Nature 200, 16-8.
Schweighofer, A., Hirt, H., Meskiene, I. 2004. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 9, 236-43.
Sgroy, V., Cassan, F., Masciarelli, O., Del Papa, M. F., Lagares, A., Luna, V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol Biotechnol. 85, 371-81.
Shah, J. 2003. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6, 365-71.
Shahin, A., Van Kaauwen, M., Esselink, D., Bargsten, J. W., Van Tuyl, J. M., Visser, R. G., Arens, P. 2012. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics 13, 640.
Sharma, R., Sahoo, A., Devendran, R., Jain, M. 2014. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE 9, e92900.
Soto, M. J., Domínguez‐Ferreras, A., Pérez‐Mendoza, D., Sanjuán, J., Olivares, J. 2009. Mutualism versus pathogenesis: the give‐and‐take in plant–bacteria interactions. Cell. Microbiol. 11, 381-8.
Spence, C., Alff, E., Shantharaj, D., Bais, H. 2012. Probiotics for Plants: Importance of Rhizobacteria on Aboveground Fitness in Plants. In: Bacteria in Agrobiology: Plant Probiotics. New York: Springer, 1-14.
Sun, J. Q., Jiang, H. L., Li, C. Y. 2011. Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4, 607-15.
Sun, Q. P., Guo, Y., Sun, Y., Sun, D. Y., Wang, X. J. 2006. Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in Arabidopsis thaliana. J. Plant Res. 119, 343-50.
Sutter, J. U., Sieben, C., Hartel, A., Eisenach, C., Thiel, G., Blatt, M. R. 2007. Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr. Biol. 17, 1396-402.
Takahashi, H., Kanayama, Y., Zheng, M. S., Kusano, T., Hase, S., Ikegami, M., Shah, J. 2004. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol. 45, 803-9.
Takahashi, H., Nakaho, K., Ishihara, T., et al. 2014. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum. Plant Cell Rep. 33, 99-110.
Timmusk, S., Wagner, E. G. H. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Mol. Plant Microbe. Interact. 12, 951-9.
Turner, J. G., Ellis, C., Devoto, A. 2002. The jasmonate signal pathway. Plant Cell 14 Suppl, S153-64.
Van Wees, S. C., Van Der Ent, S., Pieterse, C. M. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443-8.
Wang, J., Wang, Q., Yang, Y., Liu, X., Gu, J., Li, W., Ma, S., Lu, Y. 2014. De novo assembly and characterization of stress transcriptome and regulatory networks under temperature, salt and hormone stresses in Lilium lancifolium. Mol. Biol. Rep. 41, 8231-45.
Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., Lamb, C. 2004. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23, 980-8.
Yang, K. H. 2007. Application of Bacillus cereus C1L for inducing systemic resistance to southern corn leaf blight. Taipei, Taiwan: National Taiwan University, Master thesis.
Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J. R., Shinozaki, K. 2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43, 1473-83.
Zhou, N., Tootle, T. L., Glazebrook, J. 1999. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11, 2419.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51063-
dc.description.abstract本研究以次世代定序及基因微陣技術全面性分析百合灰黴病菌Botrytis elliptica侵襲百合葉片過程中,臘狀芽孢桿菌Bacillus cereus C1L透過影響那些防禦相關荷爾蒙傳訊區塊(sector)調節植物的抗病反應,以幫助鑑定單子葉植物受根圈細菌誘發的防禦荷爾蒙調控路徑,增進對單子葉作物抗病生理的瞭解。收取僅處理B. cereus C1L、僅接種百合灰黴病菌、處理B. cereus C1L後接種百合灰黴病菌、無處理無接種對照等四組百合的全RNA進行次世代定序分析,共獲得78,674個contigs,其中能比對到參照序列者占總數之35%。為鑑定B. cereus C1L誘發百合抗灰黴病過程中特有的基因差異性表現,選出各處理間變異度超過0.5,且於次世代定序與基因微陣列分析中表現趨勢一致的contigs進行文氏圖分析,發現有383個contigs表現量上升,113個contigs表現量下降,其防禦相關功能包括參與離層酸訊息路徑、調控氣孔開閉、過氧化氫相關反應、表現總穀胱甘肽硫轉移酶等,暗示離層酸傳訊路徑可能在B. cereus C1L誘導百合系統性抗灰黴病過程中扮演重要角色。為進一步探討預處理B. cereus C1L可能通過影響那些防禦傳訊區塊以強化百合對灰黴病的抗性,選取與阿拉伯芥防禦訊息路徑中關鍵基因具有最高相似度的百合同源contigs,並以其基因微陣列分析數據進行熱圖譜分析,結果顯示B. cereus C1L可能經由調控百合之茉莉酸、乙烯、離層酸傳訊區塊增進植物之系統抗病性;即時定量聚合酶連鎖反應的結果亦證實百合在抵抗灰黴病期間,B. cereus C1L預處理會促使茉莉酸傳訊區塊更加活化。此外,預處理B. cereus C1L能促進百合葉部氣孔關閉以減少百合灰黴病菌的感染,暗示離層酸傳訊區塊應參與此抗病性調控。在葉盤接種試驗中同步處理防禦相關荷爾蒙,發現同步處理茉莉酸、乙烯或離層酸可降低百合灰黴病的病徵發展,但同步處理水楊酸會使病徵輕微加劇,點明在百合灰黴病菌攻擊當下即時增加茉莉酸、乙烯或離層酸的含量可能促進百合的抗病性,暗示活化茉莉酸/乙烯及離層酸傳訊區塊在百合防禦灰黴病上具有正面貢獻。綜合文氏圖、熱圖譜、葉盤試驗及氣孔關閉比例分析之結果,推斷B. cereus C1L經由調控茉莉酸/乙烯及離層酸傳訊區塊,誘發百合對灰黴病之系統性抗病。zh_TW
dc.description.abstractThis research is to analysis the influence of Bacillus cereus C1L on what hormone signaling sectors to regulates defense response of Botrytis elliptica-infected lily by next-generation sequencing (NGS) and microarray analyses. The result may help to identify the regulation of monocot defense related hormone signaling pathway triggered by rhizobacteria and promotes the understanding of resistance physiology of monocot. Total RNAs were collected from B. cereus C1L-drenched leaves, B. elliptica-inoculated leaves, B. elliptica-inoculated leaves pre-drenched with B. cereus C1L and untreated control of lily plants for NGS analysis. Among 78,674contigs, 35% of contigs hit the reference sequences. To identify unique gene differentially expressed while triggered by B. cereus C1L on B. elliptica-inoculated lily, a criteria of variety over 0.5 of each treatment was set for selecting those contigs with expression pattern similar between NGS and customized array to create venn diagram. In this venn diagram analysis, expression of 383 contigs exhibited up-regulation while 113 contigs were down-regulated. Their functions related to plant defenses involved abscisic acid (ABA) signaling, stomatal closure regulation, hydrogen peroxide response and glutathione S-transferase, indicating that ABA signaling may play a role in lily systemic resistance against B. elliptica as triggered by B. cereus C1L. To further study about which hormone signaling pathway B. cereus C1L may utilize to strengthen resistance of lily against B. elliptica, the most similar contig homologs to the selected key gene sequences in different defense signaling pathway of Arabidopsis were selected for the analysis of heat map. Results showed that B. cereus C1L probably increase lily resistance through jasmonic acid (JA), ethylene (ET) and ABA signaling pathway. Quantitative real-time polymerase chain reaction analysis verified that pre-drench with B. cereus C1L could activate JA signaling sector upon B. elliptica attack. Besides, ABA treatment could increase stomatal closure rate and reduce the infection by B. elliptica, indicating an involvement of ABA signaling in C1L-conducted defense response. In the leaf disc assay, treatments with JA, ET or ABA at the same time of B. elliptica inoculation decreased symptom development; however, treatment with salicylic acid did not show significant effect on symptom development. These results collectively suggested that activations of JA/ET and ABA signaling sectors had positive contribution to the defense against B. elliptica. As a whole, according to results of venn diagram, heat map, leaf disc test and stomatal closure rate, B. cereus C1L–induced systemic resistance against B. elliptica in lily regulated by JA/ET and ABA signaling sectors was presumed.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:24:36Z (GMT). No. of bitstreams: 1
ntu-105-R02633005-1.pdf: 3950192 bytes, checksum: ff377ac001ff1f3352bc9154cf3879af (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 II
英文摘要 IV
縮寫參照表 VI
壹、 前言 1
貳、 前人研究 3
一、 植物與環境的互動 3
1. 植物的感知行為 3
二、 植物荷爾蒙於植物對環境反應的角色 4
1. SA 傳訊區塊 5
2. JA與ET 傳訊區塊 6
3. ABA與環境反應的調控 7
4. 荷爾蒙間的交流(Cross talk) 8
5. ISR、SAR及植物能量投資之成本考量 10
三、 單子葉植物之感知與誘導抗性反應 10
四、 百合灰黴病之發生與防治 12
1. 百合之生產概況 12
2. 百合灰黴病之發生 13
3. 百合灰黴病之防治 13
五、 B. cereus C1L誘導百合抗灰黴病 14
六、 轉錄體研究現況 15
參、 材料與方法 18
一、 供試材料之製備與保存 18
1. 供試植株之製備 18
2. 供試菌株之培養與保存 18
二、 百合轉錄體之建立與分析 18
1. 試驗之處理設計 18
2. NGS之資料庫整建 19
A. 過濾病原菌序列與資料庫之選用 19
B. 覆蓋率(coverage rate)分析 19
三、 以客製化基因微陣列(Customized Microarray)分析百合基因表現量 20
1. 客製化基因微陣列之設計 20
2. RNA樣品之製備 20
3. 基因微陣列資料庫建立與分析 21
四、 NGS及基因微陣列分析之基因表現比較 21
五、 荷爾蒙傳訊區塊表現分析 22
六、 即時定量聚合酶連鎖反應 22
七、 荷爾蒙之施用測試 23
八、 C1L施用對百合氣孔關閉之影響測試 23
肆、 結果 24
一、 百合NGS資料庫分析 24
1. 轉錄體contigs組成分類 24
2. NGS contigs之GO分析 24
二、 百合NGS與基因微陣列之轉錄體分析比較 25
1. 百合轉錄體之基因微陣列分析 25
2. 百合NGS轉錄體及基因微陣列分析之一致性比較 25
3. 各處理特別表現之基因分析 25
4. C1L+BE處理特有之基因組成分析 26
5. C1L對接種BE之百合影響最高之全面性分析 26
三、 以基因微陣列分析B. cereus C1L誘導百合系統抗病性之荷爾蒙傳訊部門 27
1. SA傳訊部門 27
2. JA傳訊部門 27
3. ET傳訊部門 28
4. ABA傳訊部門 28
5. 傳訊部門間的交流分析 28
6. 以Q-RT-PCR分析C1L處理對百合抗灰黴病傳訊部門之影響 29
7. 外施荷爾蒙對百合灰黴病病徵發展之影響 29
8. 四種處理對氣孔關閉比例之影響 29
伍、 討論 30
一、 百合轉錄體的異同 30
二、 NGS及基因微陣列之表現分析 32
三、 分析方法之比較 33
四、 C1L與百合之關係建立 34
五、 C1L調控各個荷爾蒙傳訊部門影響百合灰黴病的病勢發展 35
六、 ABA及其他抗病機制在C1L影響百合抗病表現中扮演的角色 37
七、 外施荷爾蒙對百合灰黴病罹病之影響 40
八、 C1L的促進植物生長效果 40
陸、 結論 42
柒、 參考文獻 44
捌、 圖表集 51
表一、臘狀芽孢桿菌C1L菌株處理之接種百合灰黴病菌葉片基因表現上升程度最高之contigs 52
表二、臘狀芽孢桿菌C1L處理之接種百合灰黴病菌葉片基因表現下降程度最高之contigs 53
表三、臘狀芽孢桿菌C1L處理之接種百合灰黴病菌葉片茉莉酸傳訊部門各階層之contigs 54
表四、定量即時聚合酶連鎖反應使用之百合基因引子序列 55
圖一、百合轉錄體之分析流程圖 56
圖二、百合轉錄體之註解 57
圖三、百合轉錄體與資料庫資訊比對 58
圖四、臘狀芽孢桿菌C1L對感染百合灰黴病菌之葉片GO亞群基因之影響 59
圖五、次世代定序與客製化晶片之contig表現一致性分析 60
圖六、次世代定序與客製化晶片undefined contig之表一致性分析 61
圖七、Defined contigs表現之文氏圖 62
圖八、Undefined contigs之文氏圖 63
圖九、不同處理影響百合表現基因數分析 64
圖十、水楊酸傳訊部門之熱圖譜分析 65
圖十一、茉莉酸傳訊部門之熱圖譜分析 66
圖十二、乙烯傳訊部門之熱圖譜分析 67
圖十三、離層酸傳訊部門之熱圖譜分析 68
圖十四、百合茉莉酸傳訊部門基因成員之定量即時聚合酶連鎖反應分析 69
圖十六、同步施用植物荷爾蒙對百合灰黴病病斑發展之影響 (葉盤試驗) 71
圖十七、不同處理對氣孔開閉之影響 72
玖、 附錄 73
附錄一、各處理之百合葉病徵圖 74
附錄二、客製化晶片與次世代定序之表現圖譜比較分析 75
附錄三、客製化晶片與次世代定序未定義Contigs之表現圖譜比較分析。 76
附錄四、Gene ontology之生物途徑 77
附錄五、Gene ontology之細胞組件 78
附錄六、Gene ontology之分子功能 79
附錄七、預先澆灌Bacillus cereus C1L並接種Botrytis elliptica處理下特有表現之contigs 80
dc.language.isozh-TW
dc.title臘狀芽孢桿菌C1L增強對灰黴病抗性之百合轉錄體分析zh_TW
dc.titleTranscriptome analysis of lily exhibiting enhanced resistance against gray mold triggered by Bacillus cereus C1Len
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭秋萍,黃祥恩,劉力瑜,林詩舜
dc.subject.keyword臘狀芽孢桿菌 C1L,百合灰黴病,轉錄體分析,基因微陣技術,茉莉酸/乙烯傳訊區塊,離層酸傳訊區塊,zh_TW
dc.subject.keywordBacillus cereus C1L,Botrytis elliptica,transcriptome analysis,microarray,JA/ET signaling sector,ABA signaling sector,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201600350
dc.rights.note有償授權
dc.date.accepted2016-06-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved